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ABSTRACT
We report measurements of the mass density, and cosmological-constant energy density, of)

M
, )",

the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are Ðtted
jointly with a set of supernovae from the Supernova Survey, at redshifts below 0.1, to yieldCala" n/Tololo
values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia
light-curve width-luminosity relation. The measurement yields a joint probability distribution of the
cosmological parameters that is approximated by the relation in the region0.8)

M
[ 0.6)" B [0.2 ^ 0.1

of interest For a Ñat cosmology we Ðnd (1 p statistical)()
M

[ 1.5). ()
M

] )" \ 1) )
M
flat \ 0.28~0.08`0.09 ~0.04`0.05

(identiÐed systematics). The data are strongly inconsistent with a " \ 0 Ñat cosmology, the simplest
inÑationary universe model. An open, " \ 0 cosmology also does not Ðt the data well : the data indicate
that the cosmological constant is nonzero and positive, with a conÐdence of P(" [ 0) \ 99%, including
the identiÐed systematic uncertainties. The best-Ðt age of the universe relative to the Hubble time is

Gyr for a Ñat cosmology. The size of our sample allows us to perform a variety oft0flat \ 14.9~1.1`1.4(0.63/h)
statistical tests to check for possible systematic errors and biases. We Ðnd no signiÐcant di†erences in
either the host reddening distribution or Malmquist bias between the low-redshift sampleCala" n/Tololo
and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or Ðt
residual does not signiÐcantly change the results. The conclusions are also robust whether or not a
width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and con-
strain, where possible, hypothetical alternatives to a cosmological constant.
Subject headings : cosmology : observations È distance scale È supernovae : general
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The Supernova Gold data set
9

Fig. 4.—MLCS2k2 SN Ia Hubble diagram. SNe Ia from ground-based dis-
coveries in the gold sample are shown as diamonds; HST-discovered SNe Ia
are shown as filled symbols. Overplotted is the best fit for a flat cosmology:
!M ¼ 0:29, !" ¼ 0:71.
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Cosmic 
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and

Dark Energy
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Dark Energy
a hypothetical energy that accelerates

the cosmic expansion

ä
a
= −4πG

3
(ρ+ 3P)

w ≡ P
ρ
< −1

3
⇒ ä

a
> 0

Λ as a Dark Energy (w = −1)
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Difficulties in !, DE

• No natural 
explanation for ! of 
such size

• No natural candidate 
for Dark Energy
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  Then...
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Explanation of 
Apparent 
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without 
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Inhomogeneous approach

• Tomita (2000a, 2000b, 2001, ...)

local void model, m-z relation

• Iguchi, Nakamura, Nakao (2002)

Lemaitre-Tolman-Bondi (LTB), m-z

• Alnes et al. (2006)

LTB, m-z & CMB
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Observational indication 
of

local void
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ABSTRACT
We analyze the monopole in the peculiar velocities of 44 Type Ia supernovae (SNe Ia) to test for a

local void. The sample extends from 20 to 300 h~1 Mpc, with distances, deduced from light-curve
shapes, accurate to D6%. Assuming and the most signiÐcant deviation we Ðnd from the)

m
\ 1 )" \ 0,

Hubble law is an outward Ñow of 6.5% ^ 2.2% inside a sphere of radius 70 h~1 Mpc, as would be
produced by a void of D20% underdensity surrounded by a dense shell. This shell roughly coincides
with the local great walls. Monte Carlo analyses, using Gaussian errors or bootstrap resampling, show
the probability for chance occurrence of this result out of a pure Hubble Ñow to be D2%. The mono-
pole could be contaminated by higher moments of the velocity Ðeld, especially a quadrupole, which are
not properly probed by the current limited sky coverage. The void would be less signiÐcant if is low)

mand is high. It would be more signiÐcant if one outlier is removed from the sample, or if the size of)"the void is constrained a priori. This putative void is not in signiÐcant conÑict with any of the standard
cosmological scenarios. It suggests that the Hubble constant as determined within 70 h~1 Mpc could be
overestimated by D6%, and the local value of ) may be underestimated by D20%. While the present
evidence for a local void is marginal in this data set, the analysis shows that the accumulation of SN Ia
distances will soon provide useful constraints on elusive and important aspects of regional cosmic
dynamics.
Subject headings : cosmology : observations È cosmology : theory È galaxies : distances and redshifts È

large-scale structure of universe È supernovae : general

1. INTRODUCTION

Large-scale redshift surveys of galaxies show underdense
regions of typical extent D50 h~1 Mpc. These ““ voids ÏÏ
appear to be bordered by dense ““ walls ÏÏ et al.(Kirshner

et al. [CfA] ; et al.1981 ; Huchra 1983 Broadhurst 1990 ;
et al. [Las Campanas Redshift SurveyShectman 1996

(LCRS)]). In particular, maps of our cosmological neigh-
borhood display the Great Wall of Coma and the Southern
Wall, which appear to connect into a shell-like structure of
radius 70È80 h~1 Mpc about the Local Group &(Geller
Huchra [CfA2] ; Costa et al. [Southern Sky1989 da 1994
Redshift Survey 2 (SSRS2)]). The volume encompassed by
this structure appears to be of lower density.

Despite these impressive maps, it is difficult to quantify
the large-scale radial density proÐle of this region. First, the
true galaxy density is hard to distinguish from the sample
selection function when the structure of interest approaches
the sample size. Second, we do not know how well galaxies
trace mass. And third, portions of the galaxy distribution
are obscured from our viewpoint within the Milky Way.

The imprint of wall and void structure on the power
spectrum may possibly be associated with excess power
observed at a wavelength of D100È150 h~1 Mpc (e.g.,

et al. et al. et al.Broadhurst 1990 ; Landy 1996 ; Einasto
This scale might be naturally attributed to the scale1997).

of the cosmological horizon after the universe became
matter dominated and before the plasma recombined,
though this peak is only expected to be signiÐcant for rela-

1 Racah Institute of Physics, Hebrew University, Jerusalem 91904,
Israel.

2 Astronomy Department, University of California, Berkeley,
CA 94720.

3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
Cambridge, MA 02138.

4 UCO/Lick Observatory, University of California, Santa Cruz,
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tively high values of the baryon density & White(Hu 1996).
A local void has been proposed as one way to reconcile

the age of the universe based on the Hubble expansion with
the ages of globular clusters within the framework of the
EinsteinÈde Sitter cosmology (e.g., Cen, & OstrikerTurner,

et al. Measurements of the Hubble con-1992 ; Bartlett 1995)
stant within the void would overestimate the universal
value by do/o B [3 dH/H. Indeed, the values obtained for
the Hubble constant from the longest-range distance indica-
tors, the SNe Ia et al. & Tammann(Jacoby 1992 ; Sandage

& Sandage Hamuy et al.1993 ; Tammann 1995 ; 1995,
Riess, Press, & Kirshner1996b ; 1995a, 1996 ; Branch,

Nugent, & Fisher and the gravitational lenses1997) (Falco
et al. & Kochanek are typically smaller1997 ; Keeton 1997)
than values obtained more locally using Tully-Fisher (TF)
distance indicators Freedman, & Mould(Kennicutt, 1995 ;

et al. et al.Mould 1995 ; Freedman 1994 ; Freedman 1997,
et al. A local void would also imply thatGiovanelli 1997).

local estimates of ) underestimate the global value of ).
Finally, a local outÑow would reduce the distances derived
from TF peculiar velocities for features such as the Great
Attractor, bringing them into better agreement with the
positions derived from redshift surveys et al.(Sigad 1998).

It is important to separate impressions and theoretical
wishes from Ðrmly established observational facts. Attempts
to establish monopole deviations from pure Hubble Ñow
have not yet produced conclusive results. For example, Shi

claimed Ðnding a monopole gradient in subsamples(1997)
of the Mark III catalog of Tully-Fisher peculiar velocities

et al. But he also found a marginal mono-(Willick 1997a).
pole gradient of the opposite sign in the peculiar motions of
rich clusters based on their brightest members as standard
candles (Lauer & Postman Finally, he found no1992, 1994).
signiÐcant deviation in an early subsample of 20 supernovae

et al. None of these data sets was ideal for(Riess 1996).
testing for a void of radius D70 h~1 Mpc: the Mark III
data include only a small number of galaxies beyond 70 h~1
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AB S TRACT

Corresponding to the recent observational claims that we are in a local void (an underdense

region) on scales of 200–300Mpc, the magnitude–redshift relation in a cosmological model

with a local void is investigated. It is already evident that the accelerating behaviour of high-z

supernovae can be explained in this model, because the local void plays a role similar to the

positive cosmological constant. In this paper the dependence of the behaviour on the gaps of

cosmological parameters in the inner (low-density) region and the outer (high-density)

region, the radius of the local void, and the clumpiness parameter is studied and its

implications are discussed.

Key words: cosmology: observations – large-scale structure of Universe.

1 INTRODUCTION

One of the most important cosmological observations at present is

the [m, z] relation for high-z supernovae (SNIa), which act as

standard candles at the stage reaching epochs z * 1. So far the

observed data of SNIa have been compared with the theoretical

relation in homogeneous and isotropic models, and many workers

have made efforts to determine their model parameters (Garnavich

et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999; Riess et al.

1998, 2000; Riess 2000).

There is, however, an essentially important problem to be taken

into consideration: the homogeneity of the Universe. According to

Giovanelli et al. (1998, 1999) and Dale et al. (1999), the Universe

is homogeneous in the region within 70 h 21Mpc (the Hubble

constant H0 is 100 h km s21Mpc21). On the other hand, recent

galactic redshift surveys (Marinoni et al. 1999; Marzke et al. 1998;

Folkes et al. 1999; Zucca et al. 1997) show that in the region

around 200–300 h21 Mpc from us, the distribution of galaxies may

be inhomogeneous. This is because the galactic number density in

the region of z , 0:1 or ,300 h 21Mpc from us was shown to be

smaller by a factor of .1.5 than that in the remote region of

z . 0:1. Recently a large-scale inhomogeneity suggesting a wall

around the void on scales of ,250 h 21Mpc has been found by

Blanton et al. (2001) in the SDSS commissioning data (cf. their figs

7 and 8). Similar walls on scales of ,250 h 21Mpc have already

been found in the Las Campanas and 2dF redshift surveys near the

northern and southern Galactic caps (Shectman et al. 1996; Folkes

et al. 1999; Cole et al. 2001). These results mean that there is a

local void with a radius of 200–300 h21 Mpc and we live in it.

Moreover, the measurements by Hudson et al. (1999) and

Willick (1999) for a systematic deviation of the motions of clusters

from the global Hubble flow may show some inhomogeneity on

scales larger than 100 h 21Mpc. Another suggestion for inhom-

ogeneity comes from the periodic wall structures on scales of

,130 h 21Mpc, as have been shown by Broadhurst et al. (1990),

Landy et al. (1996) and Einasto et al. (1997). This is connected

with the anomaly of the power spectrum around 100–200 h21 Mpc

(so-called ‘excess power’) which was discussed by Einasto et al.

(1999). This fact also may suggest some inhomogeneity in the

above nearby region.

If the local void really exists, the Hubble constant must also be

inhomogeneous, as must the density parameters, and the

theoretical relations between observed quantities are different

from those in homogeneous models. At present, however, the

large-scale inhomogeneity of the Hubble constant has not yet been

observationally established because of the large error bars in the

various measurements (cf. Tomita 2001).

In my previous papers (Tomita 2000a,b), cited as Paper I and

Paper II, I showed various models with a local void and discussed

the bulk flow, cosmic microwave background (CMB) dipole

anisotropy, distances and the [m, z] relation in them in the limited

parameter range. It was found that the accelerating behaviour of

supernovae can be explained in these models without a

cosmological constant. On the other hand, Kim et al. (1997)

showed that the difference between the local and global values of

the Hubble constant should be smaller than 10 per cent in

homogeneous cosmological models in order to be consistent with

the SNIa data. However, this does not impose any strong condition

on the difference in inhomogeneous models, because their analyses

were done using the luminosity distance in homogeneous models

and so they are incomplete. In fact my previous papers showed

concretely that, in inhomogeneous models, larger differences can

be consistent with the data. The possibility that the above

difference may explain the behaviour of SNIa was later discussed

also by Goodwin et al. (1999).

In this paper I describe first (in Section 2) a simplifiedPE-mail: tomita@yukawa.kyoto-u.ac.jp
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region) on scales of 200–300Mpc, the magnitude–redshift relation in a cosmological model

with a local void is investigated. It is already evident that the accelerating behaviour of high-z

supernovae can be explained in this model, because the local void plays a role similar to the

positive cosmological constant. In this paper the dependence of the behaviour on the gaps of
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implications are discussed.
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1 INTRODUCTION
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et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999; Riess et al.
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There is, however, an essentially important problem to be taken

into consideration: the homogeneity of the Universe. According to

Giovanelli et al. (1998, 1999) and Dale et al. (1999), the Universe

is homogeneous in the region within 70 h 21Mpc (the Hubble

constant H0 is 100 h km s21Mpc21). On the other hand, recent

galactic redshift surveys (Marinoni et al. 1999; Marzke et al. 1998;

Folkes et al. 1999; Zucca et al. 1997) show that in the region

around 200–300 h21 Mpc from us, the distribution of galaxies may

be inhomogeneous. This is because the galactic number density in

the region of z , 0:1 or ,300 h 21Mpc from us was shown to be

smaller by a factor of .1.5 than that in the remote region of

z . 0:1. Recently a large-scale inhomogeneity suggesting a wall

around the void on scales of ,250 h 21Mpc has been found by

Blanton et al. (2001) in the SDSS commissioning data (cf. their figs

7 and 8). Similar walls on scales of ,250 h 21Mpc have already

been found in the Las Campanas and 2dF redshift surveys near the

northern and southern Galactic caps (Shectman et al. 1996; Folkes

et al. 1999; Cole et al. 2001). These results mean that there is a

local void with a radius of 200–300 h21 Mpc and we live in it.

Moreover, the measurements by Hudson et al. (1999) and

Willick (1999) for a systematic deviation of the motions of clusters

from the global Hubble flow may show some inhomogeneity on

scales larger than 100 h 21Mpc. Another suggestion for inhom-

ogeneity comes from the periodic wall structures on scales of

,130 h 21Mpc, as have been shown by Broadhurst et al. (1990),

Landy et al. (1996) and Einasto et al. (1997). This is connected

with the anomaly of the power spectrum around 100–200 h21 Mpc

(so-called ‘excess power’) which was discussed by Einasto et al.

(1999). This fact also may suggest some inhomogeneity in the

above nearby region.

If the local void really exists, the Hubble constant must also be

inhomogeneous, as must the density parameters, and the

theoretical relations between observed quantities are different

from those in homogeneous models. At present, however, the

large-scale inhomogeneity of the Hubble constant has not yet been

observationally established because of the large error bars in the

various measurements (cf. Tomita 2001).

In my previous papers (Tomita 2000a,b), cited as Paper I and

Paper II, I showed various models with a local void and discussed

the bulk flow, cosmic microwave background (CMB) dipole

anisotropy, distances and the [m, z] relation in them in the limited

parameter range. It was found that the accelerating behaviour of

supernovae can be explained in these models without a

cosmological constant. On the other hand, Kim et al. (1997)

showed that the difference between the local and global values of

the Hubble constant should be smaller than 10 per cent in

homogeneous cosmological models in order to be consistent with

the SNIa data. However, this does not impose any strong condition

on the difference in inhomogeneous models, because their analyses

were done using the luminosity distance in homogeneous models

and so they are incomplete. In fact my previous papers showed

concretely that, in inhomogeneous models, larger differences can

be consistent with the data. The possibility that the above

difference may explain the behaviour of SNIa was later discussed

also by Goodwin et al. (1999).
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cosmological model with a local void, and treat distances in light

paths with the non-zero clumpiness (smoothness) parameter a. In
the previous paper (Paper II), I considered only distances in full-

beam light paths ða ¼ 1Þ, but in realistic paths there are deviations

from a ¼ 1 as a result of lensing effects from inhomogeneous

matter distributions. In Section 3, I show the dependence of the

[m, z] relation on model parameters such as the radius of the local

void, the ratios of density parameters and Hubble constants in

the inner (low-density) and outer (high-density) regions, and the

clumpiness parameter. The constraints to the parameters are

derived in comparison between the above relations in the present

models and the relations in homogeneous models.

Finally, in Section 4, we discuss the remaining problems and

describe concluding remarks.

2 DISTANCES IN MODELS WITH A LOCAL

VOID

The inhomogeneous models we consider consist of an inner (low-

density) region VI and an outer (high-density) region VII, which are

separated by a single shell. It is treated as a spherical singular shell

and the mass in it compensates for the mass deficiency in VI. So VI

and the shell are regarded as a local void and the wall, respectively.

The line-elements in the two regions are

ds 2 ¼ gjmnðdx
jÞmðdx jÞn

¼ 2c 2ðdt jÞ2 1 ½a jðt jÞ%2{dðx jÞ2 1 ½f jðx jÞ%2 dV2}; ð1Þ

where j (¼I or II) represents the regions, f jðx jÞ ¼ sin x j, x j and

sinh x j for k j ¼ 1; 0;21, respectively, and dV2 ¼ du 2
1

sin2u dw 2
: In the following, the negative curvature is assumed in

all regions. The Hubble constants and density parameters are

expressed as ðHI
0;H

II
0 Þ and ðVI

0;V
II
0 Þ, where we assume that HI

0 .

HII
0 and VI

0 , VII
0 . The distances of the shell and the observer O

(in VI) from the centre C (in VI) are assumed to be 200 and 40 h21
I

as a standard case. This shell corresponds to the redshift !z1 ¼ 0:067

(see Fig. 1).

In Paper II we derived the full-beam distances (CS) between the

centre C and a source S, and the distances (OS) between an

observer O and S. The two distances are nearly equal in the case

when CS or OS is much larger than CO. Since this is the only case

we deal with in the following, we treat the light paths as being CS

for simplicity. Then the angular-diameter distance dA is

dA ¼ a Ið !hI
sÞ sinhð !x

I
sÞ; ð2Þ

if a source S is in VI, where ð !hI
s; !x

I
sÞ are the coordinates of S, and h

is the conformal time coordinate. Here bars are used for the

coordinates along the light paths to the virtual observer at C. If S is

in VII, we have

dA ¼ a Ið !hI
1Þ sinhð !x

I
1Þ1 ½a IIð !hII

s sinhð !x
II
s Þ2 a IIð !hII

1 Þ sinhð !x
II
1 Þ%;

ð3Þ

where ð !hI
1; !x

I
1Þ stand for the shell, and we have

a Ið !hI
1Þ sinhð !x

I
1Þ ¼ a IIð !hII

1 Þ sinhð !x
II
1 Þ ð4Þ

from the junction condition.

Here we treat the following equation for the angular-diameter

distance to take into consideration the clumpiness along the paths

(Dyer & Roeder 1973; Schneider, Ehler & Falco 1992; Kantowski

1998; Tomita 1999):

d2ðd
j
AÞ

dðz jÞ2
1

2

11 z j
1

1

2
ð11 z jÞ½Vj

0ð11 3z jÞ1 22 2lj0%F
21

! "

&
dðdjAÞ

dz j
1

3

2
Vj

0að11 z jÞF21d
j
A ¼ 0; ð5Þ

where j ¼ I and II, z j is the redshift in the region Vj, a is the

clumpiness parameter, and

F; ð11Vj
0z

jÞð11 z jÞ2 2 lj0z
jð21 z jÞ: ð6Þ

Here and in the following the bars are omitted for simplicity. The

two redshifts at the shell are equal, i.e.

zI1 ¼ zII1 ð; z1Þ ð7Þ

for the comoving shell (cf. Paper I).

The distances dIA in VI is obtained solving equation (5) under the

conditions at z I ¼ 0 :

ðdIAÞ0 ¼ 0; ðdIA/dz
IÞ0 ¼ c/HI

0; ð8Þ

and dIIA in VII is obtained similarly under the conditions at z II ¼ 0 :

ðdIIAÞ0 ¼ constant; ðdIIA/dz
IIÞ0 ¼ c/HII

0 ; ð9Þ

where constant is determined so that the junction condition

dIAðz1Þ ¼ dIIAðz1Þ may be satisfied at the shell. Then the distance

dA(zs) from C to the source S is

dAðzsÞ ¼ dIAðzsÞ for zs # z1; ð10Þ

and

dAðzsÞ ¼ dIAðz1Þ1 dIIAðzsÞ2 dIIAðz1Þ for zs . z1; ð11Þ

where zs ¼ zIs and zIIs for zs # z1 and zs . z1, respectively. The

luminosity distance dL is related to the angular-diameter distance

dA by dL ¼ ð11 zÞ2dA.

As for the clumpiness parameter a, we studied the distribution

function N(a) as a function of z in our previous papers (Tomita

1998, 1999). To obtain N(a), we first derived model universes

consisting of galaxies and haloes using an N-body simulation

technique; secondly, we calculated the angular-diameter distance

by solving null-geodesic equations along many light paths between

an observer and sources at epoch z, and finally we derived a
Figure 1. Model with a spherical single shell. Redshifts for observers at O

and C are z and z̄.
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cosmological model with a local void, and treat distances in light

paths with the non-zero clumpiness (smoothness) parameter a. In
the previous paper (Paper II), I considered only distances in full-

beam light paths ða ¼ 1Þ, but in realistic paths there are deviations

from a ¼ 1 as a result of lensing effects from inhomogeneous

matter distributions. In Section 3, I show the dependence of the

[m, z] relation on model parameters such as the radius of the local

void, the ratios of density parameters and Hubble constants in

the inner (low-density) and outer (high-density) regions, and the

clumpiness parameter. The constraints to the parameters are

derived in comparison between the above relations in the present

models and the relations in homogeneous models.

Finally, in Section 4, we discuss the remaining problems and

describe concluding remarks.

2 DISTANCES IN MODELS WITH A LOCAL

VOID

The inhomogeneous models we consider consist of an inner (low-

density) region VI and an outer (high-density) region VII, which are

separated by a single shell. It is treated as a spherical singular shell

and the mass in it compensates for the mass deficiency in VI. So VI

and the shell are regarded as a local void and the wall, respectively.

The line-elements in the two regions are

ds 2 ¼ gjmnðdx
jÞmðdx jÞn

¼ 2c 2ðdt jÞ2 1 ½a jðt jÞ%2{dðx jÞ2 1 ½f jðx jÞ%2 dV2}; ð1Þ

where j (¼I or II) represents the regions, f jðx jÞ ¼ sin x j, x j and

sinh x j for k j ¼ 1; 0;21, respectively, and dV2 ¼ du 2
1

sin2u dw 2
: In the following, the negative curvature is assumed in

all regions. The Hubble constants and density parameters are

expressed as ðHI
0;H

II
0 Þ and ðVI

0;V
II
0 Þ, where we assume that HI

0 .

HII
0 and VI

0 , VII
0 . The distances of the shell and the observer O

(in VI) from the centre C (in VI) are assumed to be 200 and 40 h21
I

as a standard case. This shell corresponds to the redshift !z1 ¼ 0:067

(see Fig. 1).

In Paper II we derived the full-beam distances (CS) between the

centre C and a source S, and the distances (OS) between an

observer O and S. The two distances are nearly equal in the case

when CS or OS is much larger than CO. Since this is the only case

we deal with in the following, we treat the light paths as being CS

for simplicity. Then the angular-diameter distance dA is

dA ¼ a Ið !hI
sÞ sinhð !x

I
sÞ; ð2Þ

if a source S is in VI, where ð !hI
s; !x

I
sÞ are the coordinates of S, and h

is the conformal time coordinate. Here bars are used for the

coordinates along the light paths to the virtual observer at C. If S is

in VII, we have

dA ¼ a Ið !hI
1Þ sinhð !x

I
1Þ1 ½a IIð !hII

s sinhð !x
II
s Þ2 a IIð !hII
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where ð !hI
1; !x

I
1Þ stand for the shell, and we have

a Ið !hI
1Þ sinhð !x

I
1Þ ¼ a IIð !hII

1 Þ sinhð !x
II
1 Þ ð4Þ

from the junction condition.

Here we treat the following equation for the angular-diameter

distance to take into consideration the clumpiness along the paths

(Dyer & Roeder 1973; Schneider, Ehler & Falco 1992; Kantowski

1998; Tomita 1999):
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where j ¼ I and II, z j is the redshift in the region Vj, a is the

clumpiness parameter, and
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Here and in the following the bars are omitted for simplicity. The

two redshifts at the shell are equal, i.e.

zI1 ¼ zII1 ð; z1Þ ð7Þ

for the comoving shell (cf. Paper I).

The distances dIA in VI is obtained solving equation (5) under the

conditions at z I ¼ 0 :

ðdIAÞ0 ¼ 0; ðdIA/dz
IÞ0 ¼ c/HI

0; ð8Þ

and dIIA in VII is obtained similarly under the conditions at z II ¼ 0 :

ðdIIAÞ0 ¼ constant; ðdIIA/dz
IIÞ0 ¼ c/HII

0 ; ð9Þ

where constant is determined so that the junction condition

dIAðz1Þ ¼ dIIAðz1Þ may be satisfied at the shell. Then the distance

dA(zs) from C to the source S is

dAðzsÞ ¼ dIAðzsÞ for zs # z1; ð10Þ

and

dAðzsÞ ¼ dIAðz1Þ1 dIIAðzsÞ2 dIIAðz1Þ for zs . z1; ð11Þ

where zs ¼ zIs and zIIs for zs # z1 and zs . z1, respectively. The

luminosity distance dL is related to the angular-diameter distance

dA by dL ¼ ð11 zÞ2dA.

As for the clumpiness parameter a, we studied the distribution

function N(a) as a function of z in our previous papers (Tomita

1998, 1999). To obtain N(a), we first derived model universes

consisting of galaxies and haloes using an N-body simulation

technique; secondly, we calculated the angular-diameter distance

by solving null-geodesic equations along many light paths between

an observer and sources at epoch z, and finally we derived a
Figure 1. Model with a spherical single shell. Redshifts for observers at O

and C are z and z̄.
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cosmological model with a local void, and treat distances in light

paths with the non-zero clumpiness (smoothness) parameter a. In
the previous paper (Paper II), I considered only distances in full-

beam light paths ða ¼ 1Þ, but in realistic paths there are deviations

from a ¼ 1 as a result of lensing effects from inhomogeneous

matter distributions. In Section 3, I show the dependence of the

[m, z] relation on model parameters such as the radius of the local

void, the ratios of density parameters and Hubble constants in

the inner (low-density) and outer (high-density) regions, and the

clumpiness parameter. The constraints to the parameters are

derived in comparison between the above relations in the present

models and the relations in homogeneous models.

Finally, in Section 4, we discuss the remaining problems and

describe concluding remarks.

2 DISTANCES IN MODELS WITH A LOCAL

VOID

The inhomogeneous models we consider consist of an inner (low-

density) region VI and an outer (high-density) region VII, which are

separated by a single shell. It is treated as a spherical singular shell

and the mass in it compensates for the mass deficiency in VI. So VI

and the shell are regarded as a local void and the wall, respectively.

The line-elements in the two regions are

ds 2 ¼ gjmnðdx
jÞmðdx jÞn

¼ 2c 2ðdt jÞ2 1 ½a jðt jÞ%2{dðx jÞ2 1 ½f jðx jÞ%2 dV2}; ð1Þ

where j (¼I or II) represents the regions, f jðx jÞ ¼ sin x j, x j and

sinh x j for k j ¼ 1; 0;21, respectively, and dV2 ¼ du 2
1

sin2u dw 2
: In the following, the negative curvature is assumed in

all regions. The Hubble constants and density parameters are

expressed as ðHI
0;H

II
0 Þ and ðVI

0;V
II
0 Þ, where we assume that HI

0 .

HII
0 and VI

0 , VII
0 . The distances of the shell and the observer O

(in VI) from the centre C (in VI) are assumed to be 200 and 40 h21
I

as a standard case. This shell corresponds to the redshift !z1 ¼ 0:067

(see Fig. 1).

In Paper II we derived the full-beam distances (CS) between the

centre C and a source S, and the distances (OS) between an

observer O and S. The two distances are nearly equal in the case

when CS or OS is much larger than CO. Since this is the only case

we deal with in the following, we treat the light paths as being CS

for simplicity. Then the angular-diameter distance dA is

dA ¼ a Ið !hI
sÞ sinhð !x

I
sÞ; ð2Þ

if a source S is in VI, where ð !hI
s; !x

I
sÞ are the coordinates of S, and h

is the conformal time coordinate. Here bars are used for the

coordinates along the light paths to the virtual observer at C. If S is

in VII, we have

dA ¼ a Ið !hI
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II
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where ð !hI
1; !x

I
1Þ stand for the shell, and we have

a Ið !hI
1Þ sinhð !x

I
1Þ ¼ a IIð !hII

1 Þ sinhð !x
II
1 Þ ð4Þ

from the junction condition.

Here we treat the following equation for the angular-diameter

distance to take into consideration the clumpiness along the paths

(Dyer & Roeder 1973; Schneider, Ehler & Falco 1992; Kantowski

1998; Tomita 1999):
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clumpiness parameter, and
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Here and in the following the bars are omitted for simplicity. The

two redshifts at the shell are equal, i.e.

zI1 ¼ zII1 ð; z1Þ ð7Þ

for the comoving shell (cf. Paper I).

The distances dIA in VI is obtained solving equation (5) under the

conditions at z I ¼ 0 :

ðdIAÞ0 ¼ 0; ðdIA/dz
IÞ0 ¼ c/HI

0; ð8Þ

and dIIA in VII is obtained similarly under the conditions at z II ¼ 0 :

ðdIIAÞ0 ¼ constant; ðdIIA/dz
IIÞ0 ¼ c/HII

0 ; ð9Þ

where constant is determined so that the junction condition

dIAðz1Þ ¼ dIIAðz1Þ may be satisfied at the shell. Then the distance

dA(zs) from C to the source S is

dAðzsÞ ¼ dIAðzsÞ for zs # z1; ð10Þ

and

dAðzsÞ ¼ dIAðz1Þ1 dIIAðzsÞ2 dIIAðz1Þ for zs . z1; ð11Þ

where zs ¼ zIs and zIIs for zs # z1 and zs . z1, respectively. The

luminosity distance dL is related to the angular-diameter distance

dA by dL ¼ ð11 zÞ2dA.

As for the clumpiness parameter a, we studied the distribution

function N(a) as a function of z in our previous papers (Tomita

1998, 1999). To obtain N(a), we first derived model universes

consisting of galaxies and haloes using an N-body simulation

technique; secondly, we calculated the angular-diameter distance

by solving null-geodesic equations along many light paths between

an observer and sources at epoch z, and finally we derived a
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and C are z and z̄.
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statistical distribution of a determined in a comparison with the

Friedmann distance ða ¼ 1:0Þ and the Dyer–Roeder distance

ða ¼ 0:0Þ. As the result of these studies, it was found that the

average value ā of a is 1.0, which represents the Friedmann

distance, and the dispersion sa can be ,0.5 for z , 2:0. If the

detection of high-z supernovae is done in completely random

directions, the observed average value of a is equal to the above

theoretical average value ā. However, if the detections are biased

to the directions with a lower galactic number per steradian to

avoid the dust obscuration, we may have the value of a , !a2 sa.
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Is Dark Energy the Only Solution to the Apparent Acceleration of
the Present Universe?

Hideo Iguchi,1 Takashi Nakamura2,∗) and Ken-ichi Nakao3

1Department of Physics, Tokyo Institute of Technology, Tokyo 152-8550, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502,

Japan
3Department of Physics, Osaka City University, Osaka 558-8585, Japan

(Received August 2, 2002)

Even for the observed luminosity distance DL(z), which suggests the existence of dark
energy, we show that an inhomogeneous dust universe solution without dark energy is possible
in general. Future observation of DL(z) for 1 <∼ z < 1.7 may confirm or refute this possibility.

§1. Introduction

Recent measurements of the luminosity distance DL(z) using Type Ia
supernovae 1)– 3) suggest that an accurate value of DL(z) may be obtained in the
near future. In particular, SNAP 4) should provide us the luminosity distances of
∼2000 Type Ia supernovae with an accuracy of a few percent up to z ∼ 1.7 every
year. Also, from observation of the first Doppler peak of the anisotropy of the CMB,
it is suggested that the universe is flat, 5), 6) and this may be proved in the future
from observations by MAP and Planck. Under the assumption of the homogeneity
and isotropy of our universe, these observations suggest that dark energy is dominant
at present. In an attempt to determine the nature of dark energy, many arguments
have been given. 7) Recently, some mechanisms to account for the observed tiny but
finite dark energy are proposed. 8), 9) However, at present we do not have a firm
and reliable theoretical basis to investigate such a small energy scale compared with
the Planck scale. In short, the nature of dark energy under the assumption of the
homogeneity and isotropy of our universe is still a great mystery.

From the observed isotropy of the CMB, assuming that we are not in a special
part of our universe, the universe should be homogeneous. However, if our posi-
tion in the universe is special, the universe might be inhomogeneous, although the
CMB is isotropic. Such cosmological models have been constructed using spherically
symmetric models in which we are near the symmetric center. Some authors have
considered such models to interpret the SNIa data for small z, 10) as well as large
z assuming a void structure 11) – 13) to avoid dark energy. Such possibilities may be
regarded as absurd. However, our point of view in this paper is to construct a possi-
ble inhomogeneous dust universe derived from the observed DL(z). If such a model
is consistent with present observational results, the inhomogeneous universe should
be examined more seriously, because the dark energy solution is also absurd in the
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Recently, there have been suggestions that the apparent accelerated expansion of the universe is not
caused by repulsive gravitation due to dark energy, but is rather a result of inhomogeneities in the
distribution of matter. In this work, we investigate the behavior of a dust-dominated inhomogeneous
Lemaı̂tre-Tolman-Bondi universe model, and confront it with various astrophysical observations. We find
that such a model can easily explain the observed luminosity distance-redshift relation of supernovae
without the need for dark energy, when the inhomogeneity is in the form of an underdense bubble centered
near the observer. With the additional assumption that the universe outside the bubble is approximately
described by a homogeneous Einstein-de Sitter model, we find that the position of the first peak in the
cosmic microwave background (CMB) power spectrum can be made to match the WMAP observations.
Whether or not it is possible to reproduce the entire CMB angular power spectrum in an inhomogeneous
model without dark energy is still an open question.
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I. INTRODUCTION

The first indications that the universe is presently in a
state of accelerated expansion were given by J.-E. Solheim
as far back as 1966 [1]. Using the observed luminosity of
several cluster galaxies he found that the model giving the
best fit to the data was one with a nonvanishing cosmo-
logical constant and negative deceleration parameter. It is,
however, only after the more recent observations of the
luminosity of supernovae of type Ia (SNIa) that this claim
has grown in popularity. The first SNIa observations sup-
porting this claim were those of Riess et al. in 1998 [2] and
Perlmutter et al. in 1999 [3]. Since then, more recent
observations of supernovae seem to strengthen this claim
even further [4–6]. Other independent observations that
appear to favor the picture of a universe in a phase of
accelerating expansion are the measurements of the anisot-
ropies in cosmic microwave background (CMB) tempera-
ture [7] and the galaxy surveys [8]. With these observations
in mind, the current period of accelerated expansion seems
to be well established. The physical mechanism that drives
this accelerated expansion is, however, still an open ques-
tion. It is usually ascribed to an exotic energy component
dubbed dark energy, whose nature remains a mystery.

Recently, there have been several papers discussing the
possibility that the apparent accelerated expansion of the
universe is not caused by this mysterious dark energy, but
rather by inhomogeneities in the distribution of matter.
Most of these papers look at the backreaction effects aris-
ing from perturbing homogeneous models, and try to ex-
plain the accelerated expansion as corrections to the zeroth
order evolution from the higher-order, inhomogeneous

terms (see e.g. [9–15]). However, several papers criticizing
some of this work have appeared [16–20].

Another approach is to look at inhomogeneities of a
larger scale in the form of underdense bubbles. The basic
idea behind this line of explanation is that we live in an
underdense region of the universe, and the evolution of this
underdensity is what we perceive as an accelerated expan-
sion. An analysis of early supernova data by Zehavi et al.
gave the first indications that there might indeed exist such
an underdense bubble centered near us [21].

Specific models that give rise to such underdensities
have been studied previously in the form of a local homo-
geneous void [22–24]. In these works both the underden-
sity and the region outside it are assumed to be perfectly
homogeneous Friedmann-Robertson-Walker (FRW) mod-
els with a singular mass shell separating the two regions.
The inhomogeneity manifests itself as a discontinuous
jump at the location of the mass shell.

In this article, we wish to investigate more realistic
models where there is a continuous transition between
the inner underdensity and the outer regions. Therefore
we consider an isotropic but inhomogeneous dust-
dominated universe model, where the inhomogeneity is
spherically symmetric. The model can then be described
within the Lemaı̂tre-Tolman-Bondi (LTB) class of spheri-
cally symmetric universe models [25–27]. To make con-
tact with the ordinary FRW models, we assume that the
universe is homogeneous except for an isotropic inhomo-
geneity of limited spatial extension, where the transition
between these two regions is continuous.

In a homogeneous universe, it is possible to infer the
time evolution of the cosmic expansion from observations
along the past light cone, since the expansion rate is a
function of time only. In the inhomogeneous case, how-
ever, the expansion rate varies both with time and space.

*Electronic address: havard.alnes@fys.uio.no
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Håvard Alnes,1,* Morad Amarzguioui,2,† and Øyvind Grøn1,3,‡

1Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
2Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Norway

3Oslo College, Faculty of Engineering, Cort Adelersgate 30, 0254 Oslo, Norway
(Received 5 December 2005; published 17 April 2006)

Recently, there have been suggestions that the apparent accelerated expansion of the universe is not
caused by repulsive gravitation due to dark energy, but is rather a result of inhomogeneities in the
distribution of matter. In this work, we investigate the behavior of a dust-dominated inhomogeneous
Lemaı̂tre-Tolman-Bondi universe model, and confront it with various astrophysical observations. We find
that such a model can easily explain the observed luminosity distance-redshift relation of supernovae
without the need for dark energy, when the inhomogeneity is in the form of an underdense bubble centered
near the observer. With the additional assumption that the universe outside the bubble is approximately
described by a homogeneous Einstein-de Sitter model, we find that the position of the first peak in the
cosmic microwave background (CMB) power spectrum can be made to match the WMAP observations.
Whether or not it is possible to reproduce the entire CMB angular power spectrum in an inhomogeneous
model without dark energy is still an open question.

DOI: 10.1103/PhysRevD.73.083519 PACS numbers: 98.80.!k, 04.20.Jb, 95.36.+x, 98.80.Es

I. INTRODUCTION

The first indications that the universe is presently in a
state of accelerated expansion were given by J.-E. Solheim
as far back as 1966 [1]. Using the observed luminosity of
several cluster galaxies he found that the model giving the
best fit to the data was one with a nonvanishing cosmo-
logical constant and negative deceleration parameter. It is,
however, only after the more recent observations of the
luminosity of supernovae of type Ia (SNIa) that this claim
has grown in popularity. The first SNIa observations sup-
porting this claim were those of Riess et al. in 1998 [2] and
Perlmutter et al. in 1999 [3]. Since then, more recent
observations of supernovae seem to strengthen this claim
even further [4–6]. Other independent observations that
appear to favor the picture of a universe in a phase of
accelerating expansion are the measurements of the anisot-
ropies in cosmic microwave background (CMB) tempera-
ture [7] and the galaxy surveys [8]. With these observations
in mind, the current period of accelerated expansion seems
to be well established. The physical mechanism that drives
this accelerated expansion is, however, still an open ques-
tion. It is usually ascribed to an exotic energy component
dubbed dark energy, whose nature remains a mystery.

Recently, there have been several papers discussing the
possibility that the apparent accelerated expansion of the
universe is not caused by this mysterious dark energy, but
rather by inhomogeneities in the distribution of matter.
Most of these papers look at the backreaction effects aris-
ing from perturbing homogeneous models, and try to ex-
plain the accelerated expansion as corrections to the zeroth
order evolution from the higher-order, inhomogeneous

terms (see e.g. [9–15]). However, several papers criticizing
some of this work have appeared [16–20].

Another approach is to look at inhomogeneities of a
larger scale in the form of underdense bubbles. The basic
idea behind this line of explanation is that we live in an
underdense region of the universe, and the evolution of this
underdensity is what we perceive as an accelerated expan-
sion. An analysis of early supernova data by Zehavi et al.
gave the first indications that there might indeed exist such
an underdense bubble centered near us [21].

Specific models that give rise to such underdensities
have been studied previously in the form of a local homo-
geneous void [22–24]. In these works both the underden-
sity and the region outside it are assumed to be perfectly
homogeneous Friedmann-Robertson-Walker (FRW) mod-
els with a singular mass shell separating the two regions.
The inhomogeneity manifests itself as a discontinuous
jump at the location of the mass shell.

In this article, we wish to investigate more realistic
models where there is a continuous transition between
the inner underdensity and the outer regions. Therefore
we consider an isotropic but inhomogeneous dust-
dominated universe model, where the inhomogeneity is
spherically symmetric. The model can then be described
within the Lemaı̂tre-Tolman-Bondi (LTB) class of spheri-
cally symmetric universe models [25–27]. To make con-
tact with the ordinary FRW models, we assume that the
universe is homogeneous except for an isotropic inhomo-
geneity of limited spatial extension, where the transition
between these two regions is continuous.

In a homogeneous universe, it is possible to infer the
time evolution of the cosmic expansion from observations
along the past light cone, since the expansion rate is a
function of time only. In the inhomogeneous case, how-
ever, the expansion rate varies both with time and space.

*Electronic address: havard.alnes@fys.uio.no
†Electronic address: morad@astro.uio.no
‡Electronic address: oyvind.gron@iu.hio.no

PHYSICAL REVIEW D 73, 083519 (2006)

1550-7998=2006=73(8)=083519(8)$23.00 083519-1  2006 The American Physical Society

Without the need for 

Dark Energy,

LTB model can explain

not only DL(z) of SNe Ia

but also CMB

33

  But...

34

Previous works 
depend on
simplified 

toy models.

35

Psychological barrier

Such toy models can 

really describe 

  our real world?

36



How to describe 

the effects of inhomogeneity

without depending

specific toy models?

37

 Note:

nonlinear
Backreaction of 

inhomogeneities?

38

 Note:

nonlinear
Backreaction of 

inhomogeneities?
No!

39

827

Prog. Theor. Phys. Vol. 115, No. 4, April 2006, Letters

Toward a No-Go Theorem for an Accelerating Universe
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The backreaction of nonlinear inhomogeneities to the cosmic expansion is re-analyzed
in the framework of general relativity. Apparent discrepancies regarding the effect of the
nonlinear backreaction, which exist among the results of previous works in different gauges,
are resolved. By defining the spatially averaged matter energy density as a conserved quantity
in the large comoving volume, it is shown that the nonlinear backreaction neither accelerates
nor decelerates the cosmic expansion in a matter-dominated universe. The present result
in the Newtonian gauge is consistent with the previous results obtained in the comoving
synchronous gauge. Although our work does not give a complete proof, it strongly suggests
the following no-go theorem: No cosmic acceleration occurs as a result of the nonlinear
backreaction via averaging.

The recent observation of the isotropy of the cosmic microwave background ra-
diation (CMBR)1) and large galaxy surveys, such as SDSS,2) indicates that the uni-
verse is remarkably isotropic and homogeneous over scales larger than some 100 Mpc.
However, it is not straightforward to describe the universe using an isotropic and
homogeneous metric, namely, the Friedmann-Lemaitre-Robertson-Walker (FLRW)
model, because the local universe is in fact very inhomogeneous. The solution of the
Einstein equation with an averaged homogeneous matter distribution is not a solu-
tion with a realistic matter distribution, because of the nonlinearity of the Einstein
equation. Thus, it is naturally conjectured that the expansion law of the FLRW
model may be modified by local inhomogeneities. In fact, there have been inves-
tigations studying this point,3)–12) and some modification has been reported, with
apparent discrepancies among these works (for instance, see Refs. 5) and 10)). The
result might depend on the choice of the coordinates as well as the definition of the
averaging procedure. For these reasons, it has not been possible to clearly relate
such a nonlinear effect with observations. Furthermore, recent observations of Type
Ia supernovae13),14) and the CMBR15),16) strongly suggest that the cosmic expan-
sion is accelerating. Understanding the source of this accelerated expansion is one
of the greatest unsolved problems in modern cosmology.17),18) This acceleration
seems to require an unknown type of energy (dark energy, or perhaps a cosmological
constant). A possible alternative idea to explain the acceleration is that the energy
resulting inhomogeneities leads to additional terms in the Friedmann equation, as
if dark energy existed.19),20) Before reaching a definite conclusion regarding effects
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the following no-go theorem: No cosmic acceleration occurs as a result of the nonlinear
backreaction via averaging.

The recent observation of the isotropy of the cosmic microwave background ra-
diation (CMBR)1) and large galaxy surveys, such as SDSS,2) indicates that the uni-
verse is remarkably isotropic and homogeneous over scales larger than some 100 Mpc.
However, it is not straightforward to describe the universe using an isotropic and
homogeneous metric, namely, the Friedmann-Lemaitre-Robertson-Walker (FLRW)
model, because the local universe is in fact very inhomogeneous. The solution of the
Einstein equation with an averaged homogeneous matter distribution is not a solu-
tion with a realistic matter distribution, because of the nonlinearity of the Einstein
equation. Thus, it is naturally conjectured that the expansion law of the FLRW
model may be modified by local inhomogeneities. In fact, there have been inves-
tigations studying this point,3)–12) and some modification has been reported, with
apparent discrepancies among these works (for instance, see Refs. 5) and 10)). The
result might depend on the choice of the coordinates as well as the definition of the
averaging procedure. For these reasons, it has not been possible to clearly relate
such a nonlinear effect with observations. Furthermore, recent observations of Type
Ia supernovae13),14) and the CMBR15),16) strongly suggest that the cosmic expan-
sion is accelerating. Understanding the source of this accelerated expansion is one
of the greatest unsolved problems in modern cosmology.17),18) This acceleration
seems to require an unknown type of energy (dark energy, or perhaps a cosmological
constant). A possible alternative idea to explain the acceleration is that the energy
resulting inhomogeneities leads to additional terms in the Friedmann equation, as
if dark energy existed.19),20) Before reaching a definite conclusion regarding effects

∗) E-mail: kasai@phys.hirosaki-u.ac.jp
∗∗) E-mail: asada@phys.hirosaki-u.ac.jp

∗∗∗) E-mail: tof@astr.tohoku.ac.jp
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Italian, US cosmologists present alternate explanation

for accelerating expansion of the universe: Was

Einstein right when he said he was wrong?

Why is the universe expanding at an accelerating rate,

spreading its contents over ever greater dimensions of

space? An original solution to this puzzle, certainly the

most fascinating question in modern cosmology, was put

forward by four theoretical physicists, Edward W. Kolb of

the U.S. Department of Energy's Fermi National

Accelerator Laboratory, Chicago (USA): Sabino Matarrese

of the University of Padova; Alessio Notari from McGill

University (Canada); and Antonio Riotto of INFN (Istituto

Nazionale di Fisica Nucleare) of Padova (Italy). Their study

was submitted yesterday to the journal Physical Review

Letters.

Over the last hundred years, the expansion of the universe

has been a subject of passionate discussion, engaging the

most brilliant minds of the century. Like his

contemporaries, Albert Einstein initially thought that the

universe was static: that it neither expanded nor shrank.

When his own Theory of General Relativity clearly showed

that the universe should expand or contract, Einstein

chose to introduce a new ingredient into his theory. His

"cosmological constant" represented a mass density of

empty space that drove the universe to expand at an ever-

increasing rate.

When in 1929 Edwin Hubble proved that the universe is in

fact expanding, Einstein repudiated his cosmological

constant, calling it "the greatest blunder of my life." Then,

almost a century later, physicists resurrected the

cosmological constant in a variant called dark energy. In

1998, observations of very distant supernovae

demonstrated that the universe is expanding at an

accelerating rate. This accelerating expansion seemed to

be explicable only by the presence of a new component of

the universe, a "dark energy," representing some 70

percent of the total mass of the universe. Of the rest, about

25 percent appears to be in the form of another mysterious

component, dark matter; while only about 5 percent

comprises ordinary matter, those quarks, protons,

neutrons and electrons that we and the galaxies are made

of.

"The hypothesis of dark energy is extremely fascinating,"

explains Padova's Antonio Riotto, "but on the other hand it

represents a serious problem. No theoretical model, not

even the most modern, such as supersymmetry or string

theory, is able to explain the presence of this mysterious

dark energy in the amount that our observations require. If

dark energy were the size that theories predict, the

universe would have expanded with such a fantastic

velocity that it would have prevented the existence of

everything we know in our cosmos."

The requisite amount of dark energy is so difficult to

reconcile with the known laws of nature that physicists

have proposed all manner of exotic explanations, including

new forces, new dimensions of spacetime, and new

ultralight elementary particles. However, the new report

proposes no new ingredient for the universe, only a

realization that the present acceleration of the universe is a

consequence of the standard cosmological model for the

early universe: inflation.

"Our solution to the paradox posed by the accelerating

universe," Riotto says, "relies on the so-called inflationary

theory, born in 1981. According to this theory, within a tiny

fraction of a second after the Big Bang, the universe

experienced an incredibly rapid expansion. This explains

why our universe seems to be very homogeneous.

Recently, the Boomerang and WMAP experiments, which

measured the small fluctuations in the background

radiation originating with the Big Bang, confirmed

inflationary theory.

It is widely believed that during the inflationary expansion

early in the history of the universe, very tiny ripples in

spacetime were generated, as predicted by Einstein's

theory of General Relativity. These ripples were stretched

by the expansion of the universe and extend today far

beyond our cosmic horizon, that is over a region much

bigger than the observable universe, a distance of about

15 billion light years. In their current paper, the authors

propose that it is the evolution of these cosmic ripples that

increases the observed expansion of the universe and

accounts for its acceleration.

"We realized that you simply need to add this new key

ingredient, the ripples of spacetime generated during the

epoch of inflation, to Einstein's General Relativity to

explain why the universe is accelerating today," Riotto

says. "It seems that the solution to the puzzle of

acceleration involves the universe beyond our cosmic

horizon. No mysterious dark energy is required."

Fermilab's Kolb called the authors' proposal the most

conservative explanation for the accelerating universe. "It

requires only a proper accounting of the physical effects of

the ripples beyond our cosmic horizon," he said.

Data from upcoming experiments will allow cosmologists to

test the proposal.

"Whether Einstein was right when he first introduced the

cosmological constant, or whether he was right when he

later refuted the idea will soon be tested by a new round of

precision cosmological observations," Kolb said. "New

data will soon allow us to distinguish between our

explanation for the accelerated expansion of the universe

and the dark energy solution."

INFN (Istituto Nazionale di Fisica Nucleare), Italy's national

nuclear physics institute, supports, coordinates and carries

out scientific research in subnuclear, nuclear and

astroparticle physics and is involved in developing relevant

technologies.

Fermilab, in Batavia, Illinois, USA, is operated by

Universities Research Association, Inc. for the Department

of Energy's Office of Science, which funds advanced

research in particle physics and cosmology.

For further information:

Antonio Riotto, Infn of Padova

phone: +39 049 827 7256 (office), + 39 041 24 11 208

(home), mob. +39 320 486 2153

e-mail: antonio.riotto@pd.infn.it

Sabino Matarrese, University of Padova

phone: +39 049 827 7120 (office), +39 0444 92 36 48

(home)

e-mail: sabino.matarrese@pd.infn.it

Edward Kolb, Fermilab

+630 651 4695

email: rocky@fnal.gov
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Primordial inflation explains why the universe is accelerating today

Edward W. Kolb∗

Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA
and Department of Astronomy and Astrophysics, Enrico Fermi Institute,

University of Chicago, Chicago, Illinois 60637-1433 USA

Sabino Matarrese†

Dipartimento di Fisica “G. Galilei,” Università di Padova,
and INFN, Sezione di Padova, via Marzolo 8, Padova I-35131, Italy

Alessio Notari‡

Physics Department, McGill University, 3600 University Road, Montréal, QC, H3A 2T8, Canada

Antonio Riotto§

INFN, Sezione di Padova, via Marzolo 8, I-35131, Italy
(Dated: March 3, 2006)

We propose an explanation for the present accelerated expansion of the universe that does not
invoke dark energy or a modification of gravity and is firmly rooted in inflationary cosmology.

PACS numbers: 98.80.Cq

In recent years the exploration of the universe at red-
shifts of order unity has provided information about the
time evolution of the expansion rate of the universe. Ob-
servations indicate that the universe is presently under-
going a phase of accelerated expansion [1]. The acceler-
ated expansion is usually interpreted as evidence either
for a “dark energy” (DE) component to the mass-energy
density of the universe or a modification of gravity at
large distance. The goal of this Letter is to provide an
alternative explanation for the ongoing phase of accel-
erated expansion that is, we believe, rather conservative
and firmly rooted in inflationary cosmology.

In the homogeneous, isotropic Friedmann-Robertson-
Walker (FRW) cosmology, the deceleration parameter q
describes the deceleration of the cosmic scale factor a.
It is uniquely determined by the relative densities and
the equations of state of the various fluids by (overdot
denotes a time derivative)

q ≡ −
äa

ȧ2
=

1

2
ΩTOT +

3

2

∑

i

wi Ωi, (1)

where ΩTOT is the total energy density parameter and
the factors Ωi are the relative contributions of the various
components of the energy density with equation of state
wi = pi/ρi (pi and ρi are the pressure and energy density
of fluid i). The expansion accelerates if q < 0. Observa-
tions seem to require DE with present values wDE ∼ −1
and ΩDE ∼ 0.7 [2]. The negative value of wDE is usually
interpreted as the effect of a mysterious fluid of unknown
nature with negative pressure or a cosmological constant
of surprisingly small magnitude.

Our proposal is as follows. Suppose cosmological per-
turbations with wavelengths larger than the present Hub-
ble radius, H−1

0 , exist. A local observer inside our Hubble

volume would not be able to observe such super-Hubble
modes as real perturbations. Rather, their effect would
be in the form of a classical (zero-momentum) back-
ground. Suppose further that our local universe is filled
with nonrelativistic matter and no DE. We show that
if the long-wavelength perturbations evolve with time, a
local observer would infer that our universe is not ex-
panding as a homogeneous and isotropic FRW matter-
dominated universe with Hubble rate H = 2

3 t−1, where
t is cosmic time. On the contrary, the universe would
appear to have an expansion history that depends on the
time evolution of the super-Hubble perturbations. Po-
tentially, this could lead to an accelerated expansion.

The origin of the long-wavelength cosmological pertur-
bations is inflation. Inflation is an elegant explanation
for the flatness, horizon, and monopole problems of the
standard big-bang cosmology [3]. But perhaps the most
compelling feature of inflation is a theory for the origin
of primordial density perturbations and anisotropies in
the cosmic microwave background (CMB). Density (and
gravitational-wave) perturbations are created during in-
flation from quantum fluctuations and redshifted to sizes
larger than the Hubble radius. They are then “frozen”
until after inflation when they re-enter the Hubble radius.

A consequence of inflation is scalar perturbations of
wavelength larger than the Hubble radius. During in-
flation a small region of size less than the Hubble ra-
dius grew to encompass easily the comoving volume of
the entire presently observable universe. This requires a
minimum number of e-foldings, N >

∼ 60, where N mea-
sures the logarithmic growth of the scale factor during
inflation. Most models of inflation predict a number of
e-foldings that is, by far, much larger than 60 [3]. This
amounts to saying that today there is a huge phase space

arXiv:hep-th/0503117 v1   14 Mar 2005
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Abstract

We elaborate on the proposal that the observed acceleration of the Universe is the result of

the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark-

energy fluid or a modification of general relativity. Through the effective Friedmann equations

describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our

local Hubble patch is possible even if fluid elements do not individually undergo accelerated ex-

pansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble

patch if the Universe only contains irrotational dust. We then study perturbatively the time behav-

ior of general-relativistic cosmological perturbations, applying, where possible, the renormalization

group to regularize the dynamics. We show that an instability occurs in the perturbative expansion

involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate

from the backreaction of cosmological perturbations on observable scales.
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Effect of inhomogeneities on the luminosity distance-redshift relation:
Is dark energy necessary in a perturbed universe?
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The luminosity distance-redshift relation is one of the fundamental tools of modern cosmology. We
compute the luminosity distance-redshift relation in a perturbed flat matter-dominated Universe, taking
into account the presence of cosmological inhomogeneities up to second order in perturbation theory.
Cosmological observations implementing the luminosity distance-redshift relation tell us that the
Universe is presently undergoing a phase of accelerated expansion. This seems to call for a mysterious
Dark Energy component with negative pressure. Our findings suggest that the need of a Dark Energy fluid
may be challenged once a realistic inhomogeneous Universe is considered and that an accelerated
expansion may be consistent with a matter-dominated Universe.

PHYSICAL REVIEW D 71, 063537 (2005)
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Accelerating Universe via Spatial Averaging

Yasusada Nambu∗ and Masayuki Tanimoto†

Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

(Dated: June 14, 2005)

We present a model of an inhomogeneous universe that leads to accelerated expansion after taking spatial

averaging. The model universe is the Tolman-Bondi solution of the Einstein equation and contains both a region

with positive spatial curvature and a region with negative spatial curvature. We find that after the region with

positive spatial curvature begins to re-collapse, the deceleration parameter of the spatially averaged universe

becomes negative and the averaged universe starts accelerated expansion. We also discuss the generality of the

condition for accelerated expansion of the spatially averaged universe.
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Can superhorizon cosmological perturbations explain the acceleration of the universe?

Christopher M. Hirata1, ∗ and Uroš Seljak1, 2

1Department of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, USA
2International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

(Dated: March 27, 2005)

We investigate the recent suggestions by Barausse et al. (astro-ph/0501152) and Kolb et al.
(hep-th/0503117) that the acceleration of the universe could be explained by large superhorizon
fluctuations generated by inflation. We show that no acceleration can be produced by this mech-
anism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous
cosmologies results in several “no go” theorems for accelerated expansion. Next we derive an exact
solution for a specific case of initial perturbations, for which application of the Kolb et al. ex-
pressions leads to an acceleration, while the exact solution reveals that no acceleration is present.
We show that the discrepancy can be traced to higher order terms that were dropped in the Kolb
et al. analysis. We proceed with the analysis of initial value formulation of general relativity to
argue that causality severely limits what observable effects can be derived from superhorizon per-
turbations. By constructing a Riemann normal coordinate system on initial slice we show that no
infrared divergence terms arise in this coordinate system. Thus any divergences found previously
can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit
analysis of the variance of the deceleration parameter for the case of single field inflation using usual
coordinates and show that the infrared divergent terms found by Barausse et al. and Kolb et al.
cancel against several additional terms not considered in their analysis. Finally, we argue that in-
troducing isocurvature perturbations does not alter our conclusion that the accelerating expansion
of the universe cannot be explained by superhorizon modes.
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We investigate the recent suggestions by Barausse et al. (astro-ph/0501152) and Kolb et al.
(hep-th/0503117) that the acceleration of the universe could be explained by large superhorizon
fluctuations generated by inflation. We show that no acceleration can be produced by this mech-
anism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous
cosmologies results in several “no go” theorems for accelerated expansion. Next we derive an exact
solution for a specific case of initial perturbations, for which application of the Kolb et al. ex-
pressions leads to an acceleration, while the exact solution reveals that no acceleration is present.
We show that the discrepancy can be traced to higher order terms that were dropped in the Kolb
et al. analysis. We proceed with the analysis of initial value formulation of general relativity to
argue that causality severely limits what observable effects can be derived from superhorizon per-
turbations. By constructing a Riemann normal coordinate system on initial slice we show that no
infrared divergence terms arise in this coordinate system. Thus any divergences found previously
can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit
analysis of the variance of the deceleration parameter for the case of single field inflation using usual
coordinates and show that the infrared divergent terms found by Barausse et al. and Kolb et al.
cancel against several additional terms not considered in their analysis. Finally, we argue that in-
troducing isocurvature perturbations does not alter our conclusion that the accelerating expansion
of the universe cannot be explained by superhorizon modes.

PACS numbers: 98.80.Jk, 98.80.Cq

I. INTRODUCTION

There are now several lines of evidence pointing toward
an acclerating expansion of the universe. These include
the luminosity distance-redshift relation measured from
Type Ia supernovae (SN Ia) [1, 2, 3, 4, 5, 6]; the com-
bination of the angular diameter distance to the surface
of last scattering and the physical matter density ΩmH2

0
measured from the cosmic microwave background (CMB)
with the low values of ΩmH0 favored by large-scale struc-
ture data [7, 8, 9, 10, 11]; and, most recently, the inte-
grated Sachs-Wolfe effect [12, 13, 14, 15, 16, 17, 18, 19].
It is well-known that such an accelerating expansion is
impossible if one makes the following three assumptions:

1 ) the strong energy condition (SEC) holds, i.e. the
density and isotropic part of the pressure seen by all
observers on timelike trajectories satisfy ρ+3p ≥ 0;

2 ) the universe is described by general relativity
(GR); and

3 ) the universe is homogeneous and isotropic, in par-
ticular the Friedmann-Robertson-Walker (FRW)
metric is applicable.

Any explanation for the acceleration of the universe must
drop at least one of these three assumptions. Usually ei-
ther assumption #1 or #2 is dropped. In such a case,

∗Electronic address: chirata@princeton.edu

we use the term “dark energy” to describe any SEC-
violating matter field, and “modified gravity” to denote
any departure from GR. These explanations for the ac-
celeration could be considered unsatisfying since there is
presently no other experimental motivation for modifica-
tions to GR, and the matter fields normally considered
in cosmology, including baryonic matter, photons, neu-
trinos, and cold dark matter (CDM) all obey the SEC.
In either case, new physics must be invoked. In contrast,
it is observed that assumption #3 is not exactly valid in
the real universe. Therefore several recent papers [20, 21]
have asked whether in fact the “backreaction” from these
perturbations to the universe can explain the accleration,
without dropping the SEC or GR.

The purpose of this paper is to examine the recent
suggestions by Barausse et al. [20] (hereafter BMR) and
Kolb et al. [21] (hereafter KMNR) that perturbations
on scales larger than the Hubble length can explain the
acceleration. In particular, these papers suggest that the
time evolution of these large-scale perturbations produce
a large variance of the deceleration parameter q. Since
potential perturbations at the horizon scale are of order
∼ 10−5, one would expect the fluctuations in q to be of
this order, however KMNR argues that corrections due
to very large-scale modes (hundreds of e-folds outside
the horizon) can cause the standard deviation of q to be
# 10−5. In particular, for spectral index ns ≤ 1 they
claim that the corrections from very large-scale modes
contain an infrared divergence. If the variance is very
large, this could mimick dark energy and cause an appar-
ent acceleration. Indeed, the existence of perturbations
on scales well beyond the horizon is likely in the context
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Can the Acceleration of Our Universe Be
Explained by the Effects of Inhomogeneities?

Akihiro Ishibashi† and Robert M. Wald†‡

Enrico Fermi Institute† and Department of Physics‡

The University of Chicago, Chicago, IL 60637, USA

November 14, 2005

Abstract

No. It is simply not plausible that cosmic acceleration could arise
within the context of general relativity from a back-reaction effect of in-
homogeneities in our universe, without the presence of a cosmological con-
stant or “dark energy.” We point out that our universe appears to be
described very accurately on all scales by a Newtonianly perturbed FLRW
metric. (This assertion is entirely consistent with the fact that we com-
monly encounter δρ/ρ > 1030.) If the universe is accurately described by
a Newtonianly perturbed FLRW metric, then the back-reaction of inho-
mogeneities on the dynamics of the universe is negligible. If not, then it
is the burden of an alternative model to account for the observed prop-
erties of our universe. We emphasize with concrete examples that it is
not adequate to attempt to justify a model by merely showing that some
spatially averaged quantities behave the same way as in FLRW models
with acceleration. A quantity representing the “scale factor” may “accel-
erate” without there being any physically observable consequences of this
acceleration. It also is not adequate to calculate the second-order stress
energy tensor and show that it has a form similar to that of a cosmological
constant of the appropriate magnitude. The second-order stress energy
tensor is gauge dependent, and if it were large, contributions of higher
perturbative order could not be neglected. We attempt to clear up the
apparent confusion between the second-order stress energy tensor arising
in perturbation theory and the “effective stress energy tensor” arising in
the “shortwave approximation.”
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Which is true?
Backreaction 

accelerates? or not?

We shall clear up 
the confusion!
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Basic Idea of 
the standard cosmology

57

The Cosmological Principle

• The universe is spatially 

homogeneous and isotropic 

• Matter distribution is smooth 

and homogeneous

i.e., the Friedmann model
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However,

59

The actual universe is 

highly 

inhomogeneous.
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SDSS galaxies

61 62

Why 

the universe is 

believed to be 

homogeneous and 

isotropic?

63

an implicit 

agreement

   is...
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OK, the universe is locally 

inhomogeneous,

but 

the averaged behavior is 

described by 

the Friedmann model. 
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OK, the universe is locally 

inhomogeneous,

but 

the averaged behavior is 

described by 

the Friedmann model. ？
66

What is 
Friedmann 

on average?

67

ρb ≡ 〈ρ〉

ȧ

a
≡ 1
3

V̇

V

average density

scale factor
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averaging the Einstein eq.

〈Gµν〉 = 8πG〈Tµν〉
⇓

ä

a
= −4πG

3
ρb +∆x

69

If ∆x = 0, then

ä

a
= −4πG

3
ρb

a is driven merely by the mean density,

collectively by the clumps of matter.

70

In general, however, 
due to the 

nonlinearity of
   the Einstein eq. ...

71

averaging the Einstein eq.

〈Gµν〉 = 8πG〈Tµν〉
⇓

ä

a
= −4πG

3
ρb +∆x

another source driving 

the cosmic expansion
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averaging the Einstein eq.

〈Gµν〉 = 8πG〈Tµν〉
⇓

ä

a
= −4πG

3
ρb +∆x

∆x is

the nonlinear backreaction

of inhomogeneities
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Menu
I. Averaging

II. Backreaction

III. Inhomogeneous
viewpoint
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The backreaction
accelerates 

the universe?
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Pioneering works
on 

the backreaction
(in 1990s and before)
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Futamase’s scheme

M. Kasai, Phys. Rev. D 52, 5605 (1995)

The averaged Einstein eq.:
(

ȧ

a

)2

=
8πG

3
ρb −

1
3a2

〈
100
81

Ψ,iΨ,i

〉
<

8πG

3
ρb

T. Futamase, Phys. Rev. Lett. D 61, 2175 (1988)

T. Futamase, Phys. Rev. D 53, 681 (1996)

The metric:

ds2 = −(1 + 2φ(x))dt2 + a2(t)(1 − 2φ(x))δij dxidxj

The averaging procedure:

〈〈ρ〉〉 ≡ 1
V

∫

D
ρ d3x

The metric:

ds2 = −
(
1+2φ(x)

)
dt2+a2(t)

(
1−2φ(x)

)
δi j dx

idx j

77

The averaging procedure:

〈〈ρ〉〉 := 1
V

∫

D

ρ d3x

V :=

∫

D

d
3
x

78

speed up!

The averaged Einstein eq.:

(
ȧ

a

)2
=
8πG

3

(
〈〈ρ〉〉 + 〈〈ρa2v2〉〉

)
+
5

3a2
〈〈φ,iφ,i〉〉

>
8πG

3
〈〈ρ〉〉

79

In the comoving synchronous 

gauge...

M. Kasai, Phys. Rev. D 52, 5605 (1995)

The metric:

ds2 = −dt2+a2(t)
[(
1 +

20

9
Ψ(x)

)
δi j + 2a(t)Ψ,i j

]
dxidx j
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The averaging procedure:

〈ρ〉 := 1

VD

∫

D

ρ
√

(3)g d3x

VD :=

∫

D

√
(3)g d3x

ȧD

aD
:=
1

3

V̇D

VD

81

speed down

The averaged Einstein eq.:

(
ȧD

aD

)2
=
8πG

3
〈ρ〉 − 1

3a
2

D

〈
100

81
Ψ,iΨ,i

〉

<
8πG

3
〈ρ〉
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In the previous works, 

the effects were already 

controversial (?)

• positive? negative?

• gauge dependence? 

• averaging procedure 

ambiguity?

83

Note on 
the achievements 

in 1990s
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Both agree with the followings:

• the backreaction does not act as Λ.
• the backreaction behaves as a
curvature term, ∝ a−2.

One disagreement in 1990s is:

• positive/negative contribution to ȧ2
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The backreaction 
comes again 

in the 21st century.

But, people often 
writes...
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2

the volume element in the integral above is not in general
equal to the proper volume element of the metric, except
for the flat case k(r) = 0 we will consider[8]. In contrast,
the average density in the patch defined by using the
proper volume element will be different from the average
above, except for the flat LTB case. The field equations
(2-5) are very similar to the familiar Friedmann equa-
tions, except for the r-dependence of the different quan-
tities. Furthermore, we assume R′(r, t) = a + ra′ > 0
to avoid shell crossing of dust matter during their ra-
dial motion. tn(r) is an arbitrary function of r appear-
ing as an integration ’constant’. This arbitrary func-
tion has puzzled different authors who give it the name
of ’bang time function’ corresponding to the big bang
singularity[9, 10, 11]. It has, however, a simple astro-
physical meaning within our structured FRW universe.
As R(r, t) is playing the role of the radius of our local
patch, the time t = tn, leading to R = 0, means the
time of the onset of the mass condensation or nucleation
within the homogeneous cosmic fluid. That is why we
have preferred to use the subscript n for it indicating the
time of nucleation. As was pointed out in [6], for a realis-
tic density profile, tn is a decreasing function of the coor-
dinate r having a maximum at r = 0, i.e. at the center of
our patch. This means, contrary to the usual interpreta-
tion in the literature, that t > tn for all 0 < r < rΣ ≡ L.
Therefore, for all times after the onset of mass conden-
sation within our patch R(t, r) is non-vanishing and for
times t < tn(r = 0) we have the full FRW without any
structure.
Now, without going into the detailed discussion(see
[6, 7]), we know already that, assuming there is no thin
shell at the boundary of the matching, we must have

ρ
Σ
= ρb, (6)

where
Σ
= means the quantities are to be taken at the

boundary to the FRW bulk. We, therefore, are left with
the only case imposed by the dynamics of the Einstein
equations in which the mean density of a local patch is
exactly equal to the density of the background FRW uni-
verse: a desired exact dynamical result reflecting the va-
lidity of the cosmological principle at large, meaning each
nucleated patch within the FRW universe have the same
average mass density as the bulk. The total mass in a
local patch, being equal to the background density times
the volume of the patch, is distributed individually due to
its self-gravity, leading to overdense structures and voids
to compensate it. Assuming again the matter inside each
patch to be smoothed out in the form of an inhomoge-
neous cosmic fluid, we expect it to be overdense at the
center, decreasing smoothly to an underdense compensa-
tion region, a void, up to the point of matching to the
background.
The density distribution within a patch must be such
that the overdensities of structures are compensated by
voids. The nucleation time signals the onset of conden-
sation in the patch which- at least partially- opposes the

overall expansion. The running of the function tn is cru-
cial for the expansion history of the patch and therefore
will influence the luminosity of the structures growing
within the patch. So far it was shown that t′n < 0[6]. Of
course, the nucleation time function is related to the ac-
tual mass distribution for which, taking into account the
fine structure of the patch including the substructures,
we have to rely on the overall observations and the mat-
ter power spectrum[12, 13, 14, 15].
We envisage now an averaging process in which the inho-
mogeneities within the local patch are smoothed out and
we have again a FRW-type homogeneous modeling of our
local patch. The traditional way of doing cosmology is to
take the average of the matter distribution in the universe
and write down the Einstein equations for it, adding some
symmetry requirement. One then solves the equations
Gµν = 〈Tµν〉, assuming homogeneity and isotropy of the
mass distribution as the underlying symmetry. This is
based on the simplicity principle much used in theoret-
ical physics. As far as the precision of the observations
allow, we may go ahead with this simplification. The
more exact equation, however, is 〈Gµν〉 = 〈Tµν〉. Call-
ing the difference Gµν − 〈Gµν〉 = Qµν , one may write
the correct equation as Gµν = 〈Tµν〉 + Qµν . The back-
reaction term Q has so far been neglected in cosmology
because of its smallness. Now that measuring Q is within
the range of observational capabilities we have to take it
into account. There is, therefore, no need yet to change
the underlying general relativity or introduce any mys-
terious dark energy to mimic Q. Of course, the aver-
aging process is neither trivial nor unambiguous, but it
is the art of physics to master it. Fortunately, there is
an averaging formalism, developed mainly by Thomas
Buchert[16, 17, 18, 19], which can easily be adapted to
our LTB patch, having the same mass as the the FRW
sphere cut out of it. In this formalism the space-average
of any function f(t, r) is defined by

〈f〉 ≡
1

VD

∫

D

dV f, (7)

where dV is the proper volume element of the 3-
dimensional domain D of the patch we are considering
and VD is its volume. It has been shown[16, 20] that in
such a mass preserving patch the space-volume average
of any function f(r, t) does not commute with its time
derivative:

〈f〉· − 〈ḟ〉 = 〈fθ〉 − 〈f〉〈θ〉, (8)

where the expansion scalar θ, being equal to the minus
of the trace of the second fundamental form of the hy-
persurface t = const., is now a function of r and t. The
right hand side trivially vanishes for a FRW universe be-
cause of the homogeneity. This fact has far-reaching
consequences for observational cosmology in our non-
homogeneous neighborhood. The variation of the Hub-
ble function with respect to the red-shift is not so simple
any more as in the simple case of FRW universe[6]. This
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The uniform Hubble flow gauge is one of the standard
gauges of perturbation theory in FLRW models [27], and
has been further refined with the addition of a minimal
shift distortion condition by Bičak, Katz and Lynden-
Bell [9]. These authors recognise the resulting “Mach
1 gauge” as one of three possible gauges which best in-
corporates Mach’s principle, and within which there is a
minimal amount of residual gauge freedom. Bičak, Katz
and Lynden-Bell work within the framework of pertur-
bations of a global FLRW geometry. The viewpoint of
the present paper is that there is no single global FLRW
geometry. However, on account of the CEP the spatially
flat and negatively curved FLRW geometries can be con-
sidered as local regional geometries on spacelike slices as
the density varies relative to the critical density. Thus a
modification of the formalism of Bičak, Katz and Lynden-
Bell may be an appropriate starting point to deal with an
averaging formalism for the full nonlinear inhomogeneous
problem, as an alternative to Buchert’s scheme.

B. Buchert averaging

Buchert’s averaging scheme [17] is based on the start-
ing point that, in the case of an energy–momentum tensor
for irrotational dust particles in the presence of inhomo-
geneities, one can choose Gaussian normal coordinates

ds2 = −c2dt2 + 3gijdxidxj , (14)

comoving with the dust. The scalar density appearing in
the energy–momentum tensor,

T µν = ρc2n̄µn̄ν

where n̄µ = dXµ

dt , then represents the rest mass density of
the dust, and one averages over spatial slices of constant
t orthogonal to the flow, over regions which conserve the
rest mass of a portion of the fluid in a domain, D, with
continuity equation

∂t〈ρ〉 +
˙̄a

ā
〈ρ〉 = 0, (15)

where ā(t) ≡
[
V(t)/V(t

0
)
]1/3

with V(t) ≡
∫
D

d3x
√

det 3g.
Here angle brackets denote the spatial volume average of

a quantity, so that 〈R〉 ≡
(∫

D
d3x

√
det 3gR(t,x)

)
/V(t)

is the average spatial curvature, for example. The
Buchert equations consist of (15) and

3 ˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2
c2〈R〉 − 1

2
Q, (16)

¨̄a

ā
= −4πG〈ρ〉 + Q, (17)

∂t

(
ā6Q

)
+ ā4c2∂t

(
ā2〈R〉

)
= 0, (18)

where Q = 2
3

(
〈θ2〉 − 〈θ〉2

)
− 2〈σ2〉, is the kinematic

backreaction. Equation (18) is an integrability condition
which ensures closure of the other equations.

Since the backreaction term Q includes variance in vol-
ume expansion, and this is to be evaluated on a constant t
slice, it is clear that as compared to the cosmic rest frame
of Sec. IVA, different physical premises underlie the in-
terpretation implicitly assumed by Buchert’s scheme. My
approach is therefore different from other approaches to
cosmological building that have been adopted in the con-
text of Buchert averaging [28, 29, 30, 31]. The differences
may be understood from the fact that in talking about
the “rest mass density of the dust” one is actually dealing
with a concept which depends on the manner in which
dust “particles” are coarse grained. Since all forms of
energy have a rest mass equivalent, the kinetic energy of
particles within a dust particle is included as rest mass.
Similarly, since Ricci curvature affects spatial volumes
relative to their diameter, the concept of a rest density
depends on the scale of coarse graining relative to the
curvature scale.

In general, the notion of “comoving with the dust”
implicit in Buchert’s scheme can be very distinct from
“comoving with the background”, although the notions
coincide for FLRW models. This is well illustrated by
the exact spherically symmetric Lemâıtre–Tolman–Bondi
(LTB) models [32] for pressureless dust, with a prescribed
inhomogeneous density ρ(t, r). These can be written in
Gaussian normal form (14), making it straightforward to
compute a Buchert average [33, 34] [35]. At fixed comov-
ing proper time, t, as the radial coordinate r varies the
LTB dust shells have different densities, different spatial
curvature, nonzero shear, and, in general, observers at
r > 0 would not expect to see an isotropic CMB. Since
the solution is completely dynamical, there is no average
homogeneous isotropic background with respect to which
one could be comoving, unless one puts in such a back-
ground by hand by making the model asymptotic to an
FLRW model at large r.

With respect to fixed FLRW backgrounds, an alterna-
tive simple way to treat spherical inhomogeneities is by
the spherical top hat model, using concentric spherical
shells [36, 37]. In the case of a void in a background
Einstein–de Sitter universe, for example, a spherical un-
derdense shell will acquire a peculiar velocity with respect
to the background which tends to 50% of the background
Hubble rate at late times [38]. One can account for the
kinetic energy of the shell, but in view of the large pecu-
liar velocity of the shell there is a limit to the extent to
which it can be considered comoving with respect to the
background with a synchronous clock.

Once one averages on the scale of statistical homogene-
ity, as in (15), one wants to have a sense of “comoving
with the background”; i.e., different observers in differ-
ent averaging cells should have a notion of determining
the same average density at the same cosmological epoch,
and one should be able to talk about motion with respect
to canonically defined observers.

In general, when the background is only statistically
homogeneous and isotropic, there is an ambiguity in dis-
tinguishing between motion of the background and mo-
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“Buchert averaging? Hm?”

“Who’s the pioneer?

We should write a definitive paper.”

Prof. T. Futamase
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Toward a No-Go Theorem for an Accelerating Universe
through a Nonlinear Backreaction

Masumi Kasai,1,∗) Hideki Asada1,∗∗) and Toshifumi Futamase2,∗∗∗)
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The backreaction of nonlinear inhomogeneities to the cosmic expansion is re-analyzed
in the framework of general relativity. Apparent discrepancies regarding the effect of the
nonlinear backreaction, which exist among the results of previous works in different gauges,
are resolved. By defining the spatially averaged matter energy density as a conserved quantity
in the large comoving volume, it is shown that the nonlinear backreaction neither accelerates
nor decelerates the cosmic expansion in a matter-dominated universe. The present result
in the Newtonian gauge is consistent with the previous results obtained in the comoving
synchronous gauge. Although our work does not give a complete proof, it strongly suggests
the following no-go theorem: No cosmic acceleration occurs as a result of the nonlinear
backreaction via averaging.

The recent observation of the isotropy of the cosmic microwave background ra-
diation (CMBR)1) and large galaxy surveys, such as SDSS,2) indicates that the uni-
verse is remarkably isotropic and homogeneous over scales larger than some 100 Mpc.
However, it is not straightforward to describe the universe using an isotropic and
homogeneous metric, namely, the Friedmann-Lemaitre-Robertson-Walker (FLRW)
model, because the local universe is in fact very inhomogeneous. The solution of the
Einstein equation with an averaged homogeneous matter distribution is not a solu-
tion with a realistic matter distribution, because of the nonlinearity of the Einstein
equation. Thus, it is naturally conjectured that the expansion law of the FLRW
model may be modified by local inhomogeneities. In fact, there have been inves-
tigations studying this point,3)–12) and some modification has been reported, with
apparent discrepancies among these works (for instance, see Refs. 5) and 10)). The
result might depend on the choice of the coordinates as well as the definition of the
averaging procedure. For these reasons, it has not been possible to clearly relate
such a nonlinear effect with observations. Furthermore, recent observations of Type
Ia supernovae13),14) and the CMBR15),16) strongly suggest that the cosmic expan-
sion is accelerating. Understanding the source of this accelerated expansion is one
of the greatest unsolved problems in modern cosmology.17),18) This acceleration
seems to require an unknown type of energy (dark energy, or perhaps a cosmological
constant). A possible alternative idea to explain the acceleration is that the energy
resulting inhomogeneities leads to additional terms in the Friedmann equation, as
if dark energy existed.19),20) Before reaching a definite conclusion regarding effects

∗) E-mail: kasai@phys.hirosaki-u.ac.jp
∗∗) E-mail: asada@phys.hirosaki-u.ac.jp

∗∗∗) E-mail: tof@astr.tohoku.ac.jp

So we wrote a paper.
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Averaging is 
a delicate procedure.
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Averaging of a locally inhomogeneous realistic universe 

Toshifumi ‘Futamase 

Astronomical Imtitute, Tohoku University, Sendai, 980-77, Japan 

(Received 7 June 1995) 

We present an averaging scheme in general relativity which allows us to study the effect of local 

inhomogeneity on the global behavior of the universe. The scheme uses 3+1 splitting of spacetime 

and introduces Isaacson averaging on the spatial hypersurface to get the averaged geometry. As a 

result of the averaging, the Friedmann-Robertson-Walker (FRW) g eometry is derived in the first- 

order approximation for a wide class of inhomogeneous nonlinear matter distribution. The deviation 

from the FRW expansion is derived to the next order in terms of the anisotropic distribution of an 

effective stress-energy tensor. Using a simple model of inhomogeneity we show that the average 

effect of the inbomo~eneitv behaves like a negative spatial curvature term and thus has a tendency _ 

to extend the age of the universe. 

PACS number(s): 98.80.Hw, 98.8O.Cq 

I. INTRODUCTION 

The recent observation of the isotropy of the cosmic 

microwave background radiation [l] indicates that the 

universe is remarkably isotropic over the horizon scale if 

one interprets the observed dipole anisotropy as the re- 

sult of the peculiar motion in the Earth. Thus it is nat- 

ural to describe the large scale spatial geometry of the 

universe by a homogeneous and isotropic metric, namely, 

the Friedmann-Robertson-Walker (FRW) model. Homo- 

geneity and isotropy are two principles on which the stan- 

dard big bang model is based. However, the universe is 

neither isotropic nor homogeneous on local scales and the 

local metric may not be approximated by a FRW metric. 

It has been naively regarded that the FRW model is a 

large scale average of a locally inhomogeneous real uni- 

verse. There have been some studies which make some 

sense of such a naive expectation, where a simple spatial 

averaging is introduced to determine the averaged ex- 

pansion law of the universe [Z-4]. Although these studies 

have shown some interesting results, such as the back 

reaction of the local inhomogeneity on the global expan- 

sion [5], the averaging is not treated mathematically rig- 

orously. An attempt to make a rigorous statement for 

averaging out the Einstein equation has been proposed 

by Zalaletdinov [6,7], but the scheme has not yet proved 

useful for a realistic situation such as our universe. 

The averaging problem in general relativity in cmmo- 

logical circumstances has not only theoretical but also 

practical importance. It has been sometimes questioned 

whether the FRW model is appropriate for the study 

of the propagation of light rays in the real universe [S]. 

The smoothed out FRW metric coincides nowhere with 

the real metric on which light rays propagate. This has 

fundamental importance in observational cosmology. In 

fact there have been many studies about the effects of 

the local inhomogeneity on the distance-redshift relation 

[9-111. 

The aim of this present paper is to present a reason- 

ably rigorous and yet practical scheme for the averag- 

0556-2821/96/53(2)/681(9)/%06.00 3 

ing problem in general relativity in view of the appli- 

cation for cosmology. For this purpose we employ the 

3+1 formalism of general relativity [12]. It allows us 

to project four-dimensional tensorial quantities onto the 

tensorial quantities defined on the spacelike hypersurface. 

To make the scheme practical we further simplify the 

basic equations by applying an approximation based on 

two small parameters. In the course of the approxima- 

tion, the background geometry is introduced. Then the 

Isaacson averaging [13] is performed on the background 

spatial hypersurface. 

The organization of the paper is as follows. In Sec. II, 

we shall introduce the scale factor and present the ba- 

sic equations in 3+1 formalism. In Sec. III, we shall 

introduce two small parameters to characterize the inho- 

mogeneities and present the basic equations neglecting 

higher order terms. In Sec. IV, we introduce the spa- 

tial averaging according to Isaacson. The averaged equa- 

tions and the lowest order calculation for the perturbed 

quantities will be given there. A new condition for the 

applicability of the present approximation is derived. It 

improves the condition derived in the previous study [6]. 

It also will be shown that the averaged equations are 

invariant under gauge transformations which leave the 

structure of the background. In Sec. V, we take a simple 

model of inhomogeneity to calculate explicitly its effect 

on the global expansion law and point out that its effect 

behaves as a negative curvature term. Finally we shall 

give some discussion+ 

II. THE BASIC EQUATIONS 

IN 3+1 FORMALISM 

Here we shall present the basic equations in our scheme 

using the 3+1 formalism. Let us first assume that there 

exists a congruence of timelike geodesics from which the 

spacetime looks isotropic. We shall call these ‘geodesics 

the basic observers. These may be defined as the world 

lines of the observer who sees the isotropy of the cosmic 

681 01996 The American Physical Society 
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IV. DERIVATION OF FRW GEOMETRY 

BY AVERAGING (37) 

In the previous section we obtained our basic equations 
Since our background spatial geometry is that of the 

as perturbed equations around the background FRW 
FRW metric, there will be no problem about the global 

model. The perturbed quantities are classified as scalar, 
existence of a unique geodesic from z needed in the con- 

vector, and tensor with respect to the background spa- 
struction of 9;‘. 

tial geometry. Thus is would be natural to introduce the 
Then the following rules derived by Isaacson apply also 

following averaging over the background spatial hyper- 
here. 

surface according to Isaacson [lo]: 
(1) Under integrals, the divergence becomes reduced 

by a factor of n. Thus we may drop the divergence and 

similar terms. 

(Qij(z)) = Ss”‘(e,1’)s:‘(~,2’)Qk,jl(a’)f(r,1’)d’1’ , 

(2) Under integrals we may “integrate by parts” if we 

ignore terms reduced by a factor of n. 

(36) 

(3) Covariant derivatives commute on the perturbed 

quantities if we ignore terms reduced by a factor of 6’. 

Before taking the average, we have to specify the aver- 

where &(z, z’) is the bivector of geodesic parallel dis- 
aged properties of our basic variables. We shall assume 

placement and f(.z, z’) is a weighting function which falls 

smoothly to zero when 2 and +’ differ more than the av- 
(44 = 0 (33) 

eraging region, and with Under this assumption,‘we obtain the averaged equations 

(40) 

(41) 

(42) 

(43) 

(44) 

The equations for the local perturbations are obtained 

from the original equations (26)-(30) by subtracting the 

above averaged equations. The above averaged equations 

take simpler forms on inspecting the local equations. 

At this stage we need an explicit form of the stress- 

energy tensor. For simplicity we shall take the dust 

model which will be a good approximation of the present 

universe. The generalization for other cases should be 

straightforward: 

T’” = pu%? , (45) 

where 2~“ may be calculated to be 

dx’ 

-?== 

1 dx’ 

a-Tic 
(46) 

with y = [l - a-‘yij(v” + p”)(vj + @)I-‘I”, and vi = 

dx’/dt is the coordinate velocity which is supposed to be 

Isaacson averaging version
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3-invariant spatial averaging
of the 3-scalar has been introduced.
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Age of the universe: Influence of the inhomogeneities on the global expansion factor
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For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor

by averaging the Friedmann equation. In the framework of the relativistic second-order Zel’dovich-

approximation scheme for irrotational dust we use observational results in the form of the normalization

constant fixed by the Cosmic Background Explorer results and we check different power spectra, namely, for

adiabatic cold dark matter !CDM", isocurvature CDM, hot dark matter, warm dark matter, strings, and textures.
We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in

determining the age of the universe using the Hubble constant in the usual way is negligible. This does not

imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the

determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to

inhomogeneities. Our calculation does not consider such effects, but is constrained to comparing globally

homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous

treatments. #S0556-2821!97"00816-3$

PACS number!s": 98.80.Hw, 04.25.Nx, 98.62.Ai

I. INTRODUCTION

Lower limits of the age of the universe are observation-

ally determined in many ways. Measurements of isotopic

ratios of radioactive nuclei determine the ages of meteorites

by 4.5 Gyr #1,2$. Studies of the cooling of white dwarfs #3$
lead to an age of our galaxy of at least 10 Gyr. Galactic ages

could be determined to lie in a range of 12.6 to 19.6 Gyr by

measuring the abundance ratio of different isotopes of ele-

ments #1,4$. Measurements of the luminosity of stars located
at the turn-off point of the Hertzsprung Rusell diagram de-

termine the ages of globular clusters to lie in a range of 12 to

18 Gyr #5–7$. On the other hand, upper limits of the age of
the universe can be derived using cosmological models. Us-

ing a standard Friedmann-Lemaı̂tre-Robertson-Walker

!FLRW" model with vanishing cosmological constant

(%!0), the inverse of the Hubble parameter as measured
today, H0

"1, provides an upper limit of the age of the uni-

verse !the index 0 indicates values at the present time". Re-
cent measurements of cepheid variables in the virgo cluster
#8,9$ lead to a Hubble parameter of about H0!80 km/
!s Mpc" !upper limit H0

"1&12.2 Gyr", leading to an age of
8.15 Gyr for a flat universe with vanishing cosmological
constant. This is far below the observational lower limits
cited above. There are several ways out of this dilemma.
The first is believing in a lower value of the Hubble pa-

rameter. There are two reasons for that: first there exist other
observational results #10$; secondly the redshift-distance re-
lation can be influenced by the inhomogeneities, which will
influence the Hubble constant.
The second is to believe that the high value of the Hubble

constant comes from the fact that we live in an underdensed
region of the universe, whereas on average over the whole
universe the expansion parameter is smaller #11$.
The third is believing in some nonvanishing cosmological

constant #8,12$, where under some circumstances no upper
limit can be derived (t0#H0

"1), and the age of the universe
can be about 30 Gyr or even higher #12$.
In this paper we want to investigate still another way. In

the usual calculation of its age, the universe is assumed to be
exactly isotropic and homogeneous. This might be a good
approximation due to the high isotropy of the microwave-
background radiation, so that the FLRW description might
be valid in some averaged sense. On the other hand, the
inhomogeneities are large, even on large scales, for example,
at a scale of '10 Mpc the density constrast (!()/) might
reach unity. In the early universe deviations from homoge-
neity and isotropy were small, but after the deviations be-
came nonlinear, these inhomogeneities could influence the
global expansion factor. This effect is called by us the back-
reactions of the inhomogeneities. As a result of these back-
reactions the value of the Hubble parameter cannot be taken
in the usual way for a determination of the age of the uni-
verse. We will calculate quantitatively the effect of the back-
reactions and we will see how large the deviations from the
usual age determinations are. This paper is organized as fol-
lows. In Sec. II we present the basic equations and the aver-
aged Friedmann equation in a general form. In Sec. III we
use the results of the relativistic Zel’dovich-type approxima-
tion to second order !Russ et al. #13$" based on the tetrad
formalism in cosmology !Kasai #14$" and calculate the back-
reactions using different power spectra and the normalization
constant fixed by the Cosmic Background Explorer !COBE"
results. This paper was influenced by the pioneering paper
from Bildhauer and Futamase #15$; we compare our results
with theirs and others !Buchert and Ehlers #16,17$, Futamase
#18,19$" in Sec. IV. Section V is devoted to conclusions.

II. THE FRIEDMANN EQUATION IN AN

INHOMOGENEOUS UNIVERSE

In this section, we summarize a general relativistic treat-
ment to describe the nonlinear evolution of an inhomoge-
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approximation. In !19" he employed the 3!1 splitting of
space time, then the Isaacson averaging !32" is performed on
the background spatial hypersurface. His results in his Eq.

#3.16$ !18" or in Eq. #68$ !19" are of the same order as ours,
but the factors are different. There are several reasons for

that discrepancy: first in his approximation scheme he ne-

glected some terms, we do not use such an approximation.

Secondly he did not introduce a scale factor aD(t) defined by

the expansion of a comoving volume. He introduced the con-

formal factor a(t), then he rescaled this scale factor by ne-

glecting terms such as % h̄ kk&. Thirdly his averaging process
in !18" is not defined using the square root of the real metric
under the integral, rather he used the square root of the back-

ground metric, which is essentially unity for a flat back-

ground. He also used this averaging process at the end of

!19" to recover the results of !15".

C. Bildhauer and Futamase

Bildhauer and Futamase !15" calculated the backreactions
of the inhomogeneities based on the work of Futamase !18"
and the Newtonian Zel’dovich approximation #Buchert !33"$.
Their result !Eq. #25$, see also Eq. #84$ in !19"" reads, with
b'(corr(t0),

(corr# t0$"
19

36
10#6h0

2#1!z in$
4
1

)2
%!U! !2&, #4.2$

where we want to indicate a typing error: M 1 defined in their

Eq. #25$ is not the same as in their Eq. #22$, the factor k2/)2

is incorporated into M 1. With )#2%!U! !2&
")#2%!*s in!2&"%+ ,m+ ,m& this is of the same order as our
result, only the factor is different. The reasons are the same

as those in the previous subsection. Another error was found

by Futamase !19": M 1"57,
3 should read M 1"57/8, the

mistake comes from the use of the wrong integration region

!0,2," instead of !0,d" . They derived at the conclusion that
the underestimation of the age of the universe is approxi-

mately 30%, which is not correct since they just assumed

(corr(t0) to be of order unity instead of calculating it quanti-
tatively as we did here.

V. CONCLUDING REMARKS

We have calculated quantitatively the influence of the in-

homogeneities on the global expansion factor of a flat uni-

verse with vanishing cosmological constant in the framework

of a Zel’dovich-type relativistic approximation scheme using

the results from COBE. The first result is that the backreac-

tions act as an additional energy density, which is propor-

tional to aD
#2 , so we can interpret the averaged expansion as

Friedmannian with a small positive spatial curvature. The

second result is that this influence is very small. As a conse-

quence of this the modification of the age of the universe

calculated in the usual way #i.e., assuming a homogeneous
universe$ with a given Hubble constant is negligible. In all
models considered here relative differences were less than

-2$10#3. This does not imply that the inhomogeneities are

negligible for local astronomical measurements of the

Hubble constant. Locally the determination of the redshift-

distance relation can be strongly influenced by the peculiar

velocity fields due to inhomogeneities !d"Hz
#1!O(2)".

Our calculation does not consider such effects, but is con-

strained to comparing globally homogeneous and averaged

inhomogeneous matter distributions. Calculating the modifi-

cation of the redshift-distance relation will be the subject of

future investigations. As a result the age problem of the uni-

verse that arises in high-density models can only be solved

either with a lower Hubble constant, with a nonzero cosmo-

logical constant, or with a reduced age of globular clusters.
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APPENDIX A: COMMUTATION RULE

The time derivative of an averaged quantity reads

d

dt
%A&"#

V̇

V
%A&!

1

V
"
V
# Ȧ!g!A

˙!g $d3x . #A1$

This leads to the commutation rule !22,16,17"

d

dt
%A&#%Ȧ&"#%.&%A&!%A.&, #A2$

where

."

˙!g
!g

and

%.&"3
ȧD# t $

aD# t $
. #A3$

To convert Eqs. #2.8$ and #2.9$ to the Eqs. #2.12$ and #2.13$
we used

d

dt
%Vk

k&#%V̇k
k&"%#Vk

k$
2&#%Vk

k&2 #A4$

and neglected the term %Vk
k&2, because it is a higher order

quantity.

APPENDIX B: MODEL OF THE INHOMOGENEOUS

UNIVERSE

The result of the relativistic Zel’dovich approximation to

second order !13" is the following metric tensor:
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neous irrotational1 universe !14,20,21". The models we con-
sider contain irrotational dust with energy density # and

four-velocity u$. We will neglect the curvature constant k

and a possible cosmological constant % . Neglecting the fluid
pressure and the vorticity is a reasonable assumption in a

cosmological context. In comoving synchronous coordinates,

the line element can be written in the form &indices
$ ,' , . . . , run from 0 to 3 and indices i , j , . . . , run from 1

to 3)

ds2!"c2dt2#gi jdx
idx j &2.1(

and u$!(c ,0,0,0). Then, Einstein’s field equations read

1

2
!3Ri

ic
2#&ui;i(

2"ui; ju
j
;i"!

8)G

c2
# , &2.2(

ui; j! i"ui;i! j!0, &2.3(

u̇ i; j#uk;ku
i
; j#

3Ri
jc
2!

4)G

c2
#* i j , &2.4(

where 3Ri
j is the three-dimensional Ricci-tensor,

ui; j!
1

2
gikġ jk &2.5(

is the extrinsic curvature, ! denotes the covariant derivative
with respect to the three metric gi j , and an overdot denotes

+/+t . We introduce the conformal factor a(t) as

gi j!a& t (2, i j &2.6(

and we introduce the quantity Vi
j , describing the deviation

from a homogeneous and isotropic expansion

Vi
j-ui; j"

ȧ& t (

a& t (
* i j!

1

2
, ik,̇ jk . &2.7(

Then we can write two of the Einstein equations in the fol-

lowing form, which we call the Friedmann equations:

ȧ& t (2

a& t (2
!
8)G

3c2
#"

c2

6
3R"

1

6
!&Vk

k(
2"Vl

kV
k
l""

2 ȧ& t (

3a& t (
Vk

k

&2.8(

and

ä& t (

a& t (
!"

4)G

3c2
#"

1

3
Vl

kV
k
l"
1

3
V̇k

k"
2 ȧ& t (

3a& t (
Vk

k . &2.9(

We introduce the averaging procedure !22"

.A/!
1

V
"
V

A!gd3x , &2.10(

where g-detgi j . V is the comoving volume of a compact

domain D(t) of the fluid !16,17". V should be sufficiently

large so that we can assume periodic boundary conditions.

The scale factor aD(t) describes the expansion of this vol-

ume. Therefore the expansion rate of the universe is defined

by

3
ȧD& t (

aD& t (
-
V̇

V
!3

ȧ& t (

a& t (
#.Vk

k/. &2.11(

We then average the Friedmann equations, apply the com-

mutation rule, and neglect higher order terms &see Appendix
A( to get the averaged Friedmann equations in the form

ȧD& t (2

aD& t (2
!
8)G

3c2
.#/"

c2

6
.3R/"

1

6
.&Vk

k(
2"Vl

kV
k
l/

&2.12(

and

äD& t (

aD& t (
!"

4)G

3c2
.#/#

1

3
.&Vk

k(
2"Vl

kV
k
l/. &2.13(

These are the general equations for the evolution of the ex-

pansion factor of an inhomogeneous universe. They do not

depend on a specific model of the universe. Equation &2.13(
has already been discovered by Buchert and Ehlers !16,17"
&see Sec. IV(.

III. MODEL OF THE INHOMOGENOUS UNIVERSE

We use the solution of the relativistic Zel’dovich approxi-

mation to second order &Russ et al. !13"( based on the tetrad
formalism &Kasai !14"( to get

ȧD& t (2

aD& t (2
!
8)G

3c2
#b& t ("

1

t in
2 "

V

100

243aD
2 c2t in

2
0 ,k0 ,kd

3x .

&3.1(

The function 0(x) is related to the initial displacements of
the particles, to first order it represents the potential of the

density fluctuations "0 ,k
,k!*(x,t in). Here we put

aD(t in)!1 and V(t in)!1. For a justification of Eq. &3.1( see
Appendix B. We use the background relationships

#b& t in(!
c2

6)Gt in
2

and

t in!
2

3H0&1#z in(
3/2
, &3.2(

where H0 is the present value for the Hubble parameter

H0
2-

ȧD
2 & t0(

aD
2 & t0(

!
8)G

3c2
!#b& t0(##corr& t0("

-
8)G

3c2
#b& t0(!1#*corr& t0(" . &3.3(

1We do not consider here the effect of rotation, which might turn

the effect of the inhomogeneities in the opposite direction, i.e.,

tending to increase the age of the universe.
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spatial averaging, time derivative, and
commutation rule in General Relativity

97

Averaging formalism, 

developed mainly by 

Thomas Buchert?

98

Anyway,
Let us clear up 
the confusion.

99

The metric

ds2 = −(Ndt)2 + γi jdxidx j

The extrinsic curvature

Ki
j
=
1

2N
γikγ̇k j

(represents the 3-dim. deformation)

(gauge not yet fixed)

General Setup

100



3-dim. volume V

V =

∫

D

√
det(γi j) d

3x

the scale factor a(t)

3
ȧ

a
≡ V̇
V

(defined from the volume expansion rate)

(D: a compact domain on t=const. slice)

General Setup

101

The averaging procedure

〈A〉 ≡ 1

V

∫

D

A
√
γ d3x

⇓

3
ȧ

a
= 〈NKi

i
〉

The deviation from a uniform Hubble flow

Vi
j
≡ NKi

j
− ȧ
a
δi
j

General Setup

102

The averaged Einstein eq.

(
ȧ

a

)2
=
8πG

3
〈T00〉

−1
6
〈N2 (3)R〉 − 1

6
〈(Vi

i
)2 − Vi

j
V
j

i
〉

ä

a
= −4πG

3
〈T00 + N2Tii〉

+
1

3
〈(Vi

i
)2 − Vi

j
V
j

i
〉 + 1

3
〈NN|i|i + ṄK

i

i
〉

General Setup

103

Up to this point, 

the treatment is fully general.

(Gauge is not yet fixed.

cf. “Buchert formalism”)

How to evaluate it?

104



Solving by iteration
Putting the linearized solution

ds2 = −
(
1 + 2φ(x)

)
dt2 + a2

(
1 − 2φ(x)

)
δi j dx

idx j

into the R.H.S. ... ⇓
(
ȧ

a

)2
=
8πG

3
〈T00〉 +

1

a2
〈φ,iφ,i〉

ä

a
= −4πG

3
〈T00 + ρba2v2〉 −

1

3a2
〈φ,iφ,i〉

(in the Newtonian gauge)

105

(
ȧ

a

)2
=
8πG

3
〈T00〉+

1

a2
〈φ,iφ,i〉>

8πG

3
〈T00〉

The backreaction

increases

the expansion rate?

106

No.
Not necessarily.

107

Check the average density ρ̄

should obey

ρ̄ a3 = const.

Clearly, 〈T00〉 !ρ̄
(Otherwise,  the averaged spacetime it not compatible with Friedmann.)

108



In order to guarantee

˙̄ρ+3
ȧ

a
ρ̄= 0,

it is uniquely determined

ρ̄≡ 〈T00 + ρba2v2〉 +
1

4πGa2
〈φ,iφ,i〉

109

The averaged Einstein equation

should be written in terms of

· · · = ρ̄ + addtional contributions

“the backreaction”

110

Summary

111

(
ȧ

a

)2
=
8πG

3
ρ̄− 1

9a2
〈φ,iφ,i〉

ä

a
= −4πG

3
ρ̄

• The backreaction does not change
the acceleration ä.

112



(
ȧ

a

)2
=
8πG

3
ρ̄− 1

9a2
〈φ,iφ,i〉 <

8πG

3
ρ̄

ä

a
= −4πG

3
ρ̄

• The backreaction decreases ȧ/a.

113

(
ȧ

a

)2
=
8πG

3
ρ̄− 1

9a2
〈φ,iφ,i〉

• The backreaction term behaves as

a (small) positive curvature term.

(
ȧ

a

)2
=
8πG

3
ρb−

k

a2

(cf. Friedmann equation)

114

Furthermore, the results are

• consistent with other (comoving)
gauge calculations.

• not dependent on the definition of
the averaging.

115

No Go Theorem

116



Assumption 1:

The universe after 

decoupling was slightly 

perturbed Friedmann.

(Supported by CMB obs.) 

117

Assumption 2:

Perturbation theory well 

describes 

the inhomogeneous metric.

(Even for ">1)

cf. Futamase’s approximation scheme, 
the relativistic Zeldovich approximation (Kasai), etc.
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Then...

119

Nonlinear backreaction 
neither accelerate 

nor decelerate 
the cosmic expansion.

120



121

One more thing
about 

averaging

122

Light feels
local metric, 

not the 
averaged one.

123

Average of light

propagation in

 inhomogeneous spacetime

is not equal to

light propagation in 

the averaged spacetime.

124



Attempt to  explain 

apparent 

acceleration 

without 

Dark Energy

125

Inhomogeneous approach

• Tomita (2000a, 2000b, 2001, ...)

local void model

• Iguchi, Nakamura, Nakao (2002)

Lemaitre-Tolman-Bondi

• Alnes et al. (2006)

Lemaitre-Tolman-Bondi

126

Simplified 
toy models

to represent 
the actual universe.

127

Enough about toy models

128



What’s 
the observed data

telling us about
inhomogeneity?

129

The standard analysis 
in the Friedmann model

130

Summary
of 

SNe Ia m-z relation
by Perlmutter et al. (1999)
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We report measurements of the mass density, and cosmological-constant energy density, of)
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the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are Ðtted
jointly with a set of supernovae from the Supernova Survey, at redshifts below 0.1, to yieldCala" n/Tololo
values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia
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cosmological parameters that is approximated by the relation in the region0.8)

M
[ 0.6)" B [0.2 ^ 0.1

of interest For a Ñat cosmology we Ðnd (1 p statistical)()
M

[ 1.5). ()
M

] )" \ 1) )
M
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(identiÐed systematics). The data are strongly inconsistent with a " \ 0 Ñat cosmology, the simplest
inÑationary universe model. An open, " \ 0 cosmology also does not Ðt the data well : the data indicate
that the cosmological constant is nonzero and positive, with a conÐdence of P(" [ 0) \ 99%, including
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Gyr for a Ñat cosmology. The size of our sample allows us to perform a variety oft0flat \ 14.9~1.1`1.4(0.63/h)
statistical tests to check for possible systematic errors and biases. We Ðnd no signiÐcant di†erences in
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ABSTRACT
We report measurements of the mass density, and cosmological-constant energy density, of)

M
, )",

the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are Ðtted
jointly with a set of supernovae from the Supernova Survey, at redshifts below 0.1, to yieldCala" n/Tololo
values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia
light-curve width-luminosity relation. The measurement yields a joint probability distribution of the
cosmological parameters that is approximated by the relation in the region0.8)

M
[ 0.6)" B [0.2 ^ 0.1

of interest For a Ñat cosmology we Ðnd (1 p statistical)()
M

[ 1.5). ()
M

] )" \ 1) )
M
flat \ 0.28~0.08`0.09 ~0.04`0.05

(identiÐed systematics). The data are strongly inconsistent with a " \ 0 Ñat cosmology, the simplest
inÑationary universe model. An open, " \ 0 cosmology also does not Ðt the data well : the data indicate
that the cosmological constant is nonzero and positive, with a conÐdence of P(" [ 0) \ 99%, including
the identiÐed systematic uncertainties. The best-Ðt age of the universe relative to the Hubble time is

Gyr for a Ñat cosmology. The size of our sample allows us to perform a variety oft0flat \ 14.9~1.1`1.4(0.63/h)
statistical tests to check for possible systematic errors and biases. We Ðnd no signiÐcant di†erences in
either the host reddening distribution or Malmquist bias between the low-redshift sampleCala" n/Tololo
and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or Ðt
residual does not signiÐcantly change the results. The conclusions are also robust whether or not a
width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and con-
strain, where possible, hypothetical alternatives to a cosmological constant.
Subject headings : cosmology : observations È distance scale È supernovae : general
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Hubble diagram for 42+18 type Ia SNe

42 SNe from 
Supernova 
Cosmology
Project

18 SNe from 
Calan/Tololo

data taken from Perlmutter et al. (1999)
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m-z relation
to fit the data
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Perlmutter et al. (1999)がやったこと

m = M − 5 + 5 log10 DL(z)

Ia型超新星の m-z relationの fittingから，
Ωm,ΩΛ を決める．

m = M − 5 + 5 log10 DL(z)

luminosity distance DL(z)

DL(z) =
c (1+z)

H0
√

1−Ωm−ΩΛ
×

sinh


√

1−Ωm−ΩΛ

∫ z

0

dz′

√
(1+Ωm z′)(1+z′)3−z′ (2+z′)ΩΛ




DL(z) is a (bit complicated) function of z
with the constant parameters H0, Ωm, ΩΛ.

Yes, I know. But...

All SNe in the data are z < 1, therefore...

the Taylor expansion works.
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No. 2, 1999 ) AND " FROM 42 HIGH-REDSHIFT SUPERNOVAE 569

FIG. 2.È(a) Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from
the Supernova Survey, plotted on a linear redshift scale to display details at high redshift. The symbols and curves are as in Fig. 1.Cala! n/Tololo
(b) Magnitude residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset, 0.72). The dashed curves are for a range of Ñat()

M
, )") \ (0.28,

cosmological models : on top, (0.5, 0.5) third from bottom, (0.75, 0.25) second from bottom, and (1, 0) is the solid curve on bottom. The()
M

, )") \ (0, 1)
middle solid curve is for Note that this plot is practically identical to the magnitude residual plot for the best-Ðt unconstrained cosmology()

M
, )") \ (0, 0).

of Ðt C, with (c) Uncertainty-normalized residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset,()
M

, )") \ (0.73, 1.32). ()
M

, )") \
(0.28, 0.72).

supernovae ; cf. P97) and checked for consistency after the
Ðt.

We have compared the results of Bayesian and classical,
““ frequentist,ÏÏ Ðtting procedures. For the Bayesian Ðts, we
have assumed a ““ prior ÏÏ probability distribution that has
zero probability for but otherwise has uniform)

M
\ 0

probability in the four parameters a, and For)
M

, )", M
B
.

the frequentist Ðts, we have followed the classical statistical
procedures described by Feldman & Cousins (1998) to
guarantee frequentist coverage of our conÐdence regions in
the physically allowed part of parameter space. Note that
throughout the previous cosmology literature, completely
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TABLE 3

FIT RESULTS

Best Fit
Fit N s2 DOF )

M
flat P()" [ 0) ()

M
, )") Fit Description

Inclusive Fits :
A . . . . . . 60 98 56 0.29~0.08`0.09 0.9984 0.83, 1.42 All supernovae
B . . . . . . 56 60 52 0.26~0.08`0.09 0.9992 0.85, 1.54 Fit A, but excluding two residual outliers and two stretch outliers

Primary Ðt :
C . . . . . . 54 56 50 0.28~0.08`0.09 0.9979 0.73, 1.32 Fit B, but also excluding two likely reddened

Comparison Analysis Techniques :
D . . . . . . 54 53 51 0.25~0.09`0.10 0.9972 0.76, 1.48 No stretch correctiona
E . . . . . . 53 62 49 0.29~0.10`0.12 0.9894 0.35, 0.76 Bayesian one-sided extinction correctedb

E†ect of Reddest Supernovae :
F . . . . . . 51 59 47 0.26~0.08`0.09 0.9991 0.85, 1.54 Fit B supernovae with colors measured
G . . . . . . 49 56 45 0.28~0.08`0.09 0.9974 0.73, 1.32 Fit C supernovae with colors measured
H . . . . . . 40 33 36 0.31~0.09`0.11 0.9857 0.16, 0.50 Fit G, but excluding seven next reddest and two next faintest high-redshift supernovae

Systematic Uncertainty Limits :
I . . . . . . . 54 56 50 0.24~0.08`0.09 0.9994 0.80, 1.52 Fit C with ]0.03 mag systematic o†set
J . . . . . . . 54 57 50 0.33~0.09`0.10 0.9912 0.72, 1.20 Fit C with [0.04 mag systematic o†set

Clumped Matter Metrics :
K . . . . . . 54 57 50 0.35~0.10`0.12 0.9984 2.90, 2.64 Empty beam metricc
L . . . . . . 54 56 50 0.34~0.09`0.10 0.9974 0.94, 1.46 Partially Ðlled beam metric

a A 0.24 mag intrinsic SNe Ia luminosity dispersion is assumed.
b Bayesian method of RPK96 with conservative prior (see text and Appendix) and 0.10 mag intrinsic SNe Ia luminosity dispersion.
c Assumes additional Bayesian prior of )

M
\ 3, )" \ 3.

describe supernova colors, is not a color measurement on a
particular day. The di†erence of this color parameter from
the found for a sample of low-redshift super-Bmax [ Vmaxnovae for the same light-curve stretch-factor (Tripp 1998 ;
Kim et al. 1999 ; M. M. Phillips 1998, private
communication) does yield the rest-frame E(B[V ) color
excess for the Ðtted supernova.

For the high-redshift supernovae at 0.3 \ z \ 0.7, the
matching R- and I-band measurements take the place of the
rest-frame B and V measurements, and the Ðt B and V
light-curve templates are K-corrected from the appropriate
matching Ðlters, e.g., (Kim et al. 1996 ;R(t) \ B(t) ] K

BR
(t)

Nugent et al. 1998). For the three supernovae at z [ 0.75,
the observed R[I corresponds more closely to a rest-frame
U[B color than to a B[V color, so E(B[V ) is calculated
from rest-frame E(U[B) using the extinction law of Card-
elli et al. (1989). Similarly, for the two SNe Ia at z D 0.18,
E(B[V ) is calculated from rest-frame E(V [R).

Figure 6 shows the color excess distributions for both the
low- and high-redshift supernovae after removing the color
excess due to our Galaxy. Six high-redshift supernovae are
not shown on this E(B[V ) plot, because six of the Ðrst
seven high-redshift supernovae discovered were not
observed in both R and I bands. The color of one low-
redshift supernova, SN 1992bc, is poorly determined by the
V -band template Ðt and has also been excluded. Two super-
novae in the high-redshift sample are [3 p red-and-faint
outliers from the mean in the joint probability distribution
of E(B[V ) color excess and magnitude residual from Ðt B.
These two, SNe 1996cg and 1996cn (Fig. 6 ; light shading),
are very likely reddened supernovae. To obtain a more
robust Ðt of the cosmological parameters, in Ðt C we
remove these supernovae from the sample. As can be seen
from the Ðt-C 68% conÐdence region of Figure 5a, these
likely reddened supernovae do not signiÐcantly a†ect any of
our results. The main distribution of 38 high-redshift super-
novae thus is barely a†ected by a few reddened events. We

Ðnd identical results if we exclude the six supernovae
without color measurements (Ðt G in Table 3). We take Ðt C
to be our primary analysis for this paper, and in Figure 7 we
show a more extensive range of conÐdence regions for this
Ðt.

4.1.2. Cross-Checks on Extinction
The color-excess distributions of the Ðt C data set (with

the most signiÐcant measurements highlighted by dark
shading in Fig. 6) show no signiÐcant di†erence between the
low- and high-redshift means. The dashed curve drawn over
the high-redshift distribution of Figure 6 shows the
expected distribution if the low-redshift distribution had the
measurement uncertainties of the high-redshift supernovae
indicated by the dark shading. This shows that the
reddening distribution for the high-redshift supernovae is
consistent with the reddening distribution for the low-
redshift supernovae, within the measurement uncertainties.
The error-weighted means of the low- and high-redshift dis-
tributions are almost identical : SE(B[V )THamuy \ 0.033
^ 0.014 mag and \ 0.035 ^ 0.022 mag. WeSE(B[V )TSCPalso Ðnd no signiÐcant correlation between the color excess
and the statistical weight or redshift of the supernovae
within these two redshift ranges.

To test the e†ect of any remaining high-redshift
reddening on the Ðt C measurement of the cosmological
parameters, we have constructed a Ðt H subset of the high-
redshift supernovae that is intentionally biased to be bluer
than the low-redshift sample. We exclude the error-
weighted reddest 25% of the high-redshift supernovae ; this
excludes nine high-redshift supernovae with the highest
error-weighted E(B[V ). We further exclude two super-
novae that have large uncertainties in E(B[V ) but are sig-
niÐcantly faint in their residual from Ðt C. This is a
somewhat conservative cut, since it removes the faintest of
the high-redshift supernovae, but it does ensure that the
error-weighted E(B[V ) mean of the remaining supernova

Fit Results of Perlmutter et al. (1999)
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Ωm = 0.28,ΩΛ = 0.72 is Not the Best Fit...
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Results of Perlmutter et al. (1999)

Ωm = 0.28, ΩΛ = 0.72
(Best Fit: Ωm = 0.73, ΩΛ = 1.32)

⇓

ä
a

∣∣∣∣t0
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(
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2
Ωm + ΩΛ

)
> 0

Accelerating Universe !
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The m-z relation
to fit the data

148



DL(z) ≡ c
H0

d(z)

m = Mabs − 5 + 5 log10 DL(z)
=M + 5 log10 d(z)

M ≡ M − 5 + 5 log10
c

H0

M: “the magnitude zero-point” or
M: “H0-free absolute magnitude”
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The m-z relation

m =M + 5 log10 d(z,Ωm)

fitting parameters areM, Ωm
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low-z (z < 0.2)
zone fitting
without !
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high-z (z > 0.3)
zone fitting
without !
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Plot
all fittings...
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  Close up...
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Determination of the cosmological
parameters from the data fitting

• M (hence H0) is mainly from low-z data fitting

• Assuming theM is constant,
and fitting high-z data, ΩΛ may be necessary

• If the constancy ofM are relaxed，
we don’t need ΩΛ
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Determination of the cosmological
parameters from the data fitting
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Inhomogeneous
Interpretation?
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different
• Astronomically likely...

• Calibration done only for nearby SNe

• Difficulty in estimating M of 
high-z (different environment) SNe
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different

M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different

• modified gravity theories...
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M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different

M(low-z) !M(high-z) ... Implication?

M = M − 5 + 5 log10
c

H0

In low-z and high-z regions,

1. the absolute luminosity M is different

2. the speed of light c is different

3. H0 is different

• Inhomogeneous viewpoint

• effects of large-scale inhomgeneities
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SNe m-z relation implies

not the existence of Λ，
but the inhomogeneity of H0 and Ωm !?
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The meaning:
inhomogeneities 

in H0 and Ωm
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The meaning:
our universe is

inhomogeneous
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How large is the inhomogeneity in H0 ?

23.98 − 24.27 = 5 log10
H0(high-z)
H0(low-z)

⇓

H0(high-z)
H0(low-z)

= 0.87

13% smaller H0(high-z) can explain the data
without Dark Energy

M(low-z) −M(high-z)
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How large is the inhomogeneity in H0 ?

23.98 − 24.27 = 5 log10
H0(high-z)
H0(low-z)

⇓

H0(high-z)
H0(low-z)

= 0.87

13% smaller H0(high-z) can explain the data
without Dark Energy
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Plausible?
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How to incorporate

the post-Friedmannian effects 

of inhomogeneity 

into 

               ?

The luminosity distance

with the post-Friedmannian corrections

DL(z) =
c

H̄0

(
z + d̃2 z

2 + d̃3 z
3 + · · ·

)

d̃2 =
1

4

(
2 − Ω̄m + 2ΩΛ−4 h1

)

d̃3 =
1

8

(
Ω̄2
m
+ 4ΩΛ

2 − 4 Ω̄mΩΛ − 2 Ω̄m − 4ΩΛ
)

+(terms with h1, h2, ω1)
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an illustration
for z < 1 case
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Perlmutter et al. (1999)がやったこと

m = M − 5 + 5 log10 DL(z)

Ia型超新星の m-z relationの fittingから，
Ωm,ΩΛ を決める．

m = M − 5 + 5 log10 DL(z)

luminosity distance DL(z)

DL(z) =
c (1+z)

H0
√

1−Ωm−ΩΛ
×

sinh


√

1−Ωm−ΩΛ

∫ z

0

dz′

√
(1+Ωm z′)(1+z′)3−z′ (2+z′)ΩΛ




DL(z) is a (bit complicated) function of z
with the constant parameters H0, Ωm, ΩΛ.

Yes, I know. But...

All SNe in the data are z < 1, therefore...

the Taylor expansion works.
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DL(z) is a (bit complicated) function of z

with the constant parameters H0, Ωm, ΩΛ.

Yes, I know. But...

All SNe in the data are z < 1, therefore...

the Taylor expansion works.
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The Taylor expansion of DL(z)

DL(z) = c
H0

(
z + d2 z2 + d3 z3 + · · ·

)

d2 =
1
4

(2 − Ωm + 2ΩΛ)

d3 =
1
8
(
Ωm

2 + 4ΩΛ2 − 4ΩmΩΛ − 2Ωm − 4ΩΛ
)
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DL(z) = c
H0

(
z + d2 z2 + d3 z3 + · · ·

)

m = M − 5 + 5 log10 DL(z)
=M + 5 log10

{
z + d2 z2 + d3 z3 + · · ·

}

M ≡ M − 5 + 5 log10
c

H0

M: “the magnitude zero-point” or
M: “H0-free absolute magnitude”
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m-z relation for z < 1 SNIa

m =M + 5 log10 z

+ 5 log10

{
1 + d2 z + d3 z2 + · · ·

}

• Fitting parameters are d2, d3,M (not H0 itself)
• For z ! 1，

m "M + 5 log10 z ⇒M is obtained

• Once d2, d3 are otained,

Ωm = 2 (1 − d2) (1 − 2 d2) − 2 d3

ΩΛ = d2 (2 d2 − 1) − d3

determine Ωm, ΩΛ

SNe Ia
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m-z relation for z < 1 SNIa

m =M + 5 log10 z

+ 5 log10
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}
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determine Ωm, ΩΛ

SNe Ia
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m-z relation for z < 1 SNIa

m =M + 5 log10 z

+ 5 log10

{
1 + d2 z + d3 z2 + · · ·

}

• Fitting parameters are d2, d3,M (not H0 itself)
• For z ! 1，

m "M + 5 log10 z ⇒M is obtained

• Once d2, d3 are otained,

Ωm = 2 (1 − d2) (1 − 2 d2) − 2 d3

ΩΛ = d2 (2 d2 − 1) − d3

determine Ωm, ΩΛ

SNe Ia
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m-z relation for z < 1 SNIa

m =M + 5 log10 z

+ 5 log10

{
1 + d2 z + d3 z2 + · · ·

}

• Fitting parameters are d2, d3,M (not H0 itself)
• For z ! 1，

m "M + 5 log10 z ⇒M is obtained

• Once d2, d3 are otained,

Ωm = 2 (1 − d2) (1 − 2 d2) − 2 d3

ΩΛ = d2 (2 d2 − 1) − d3

determine Ωm, ΩΛ

SNe Ia
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In the homogeneous (Friedmann) model,

H0 ≡
1

3
θ(t0, xi) ⇒ H(t0) (const.)

Ωm ≡
8πG ρ(t0, xi)

3 H0
2

⇒ Ωm(t0) (const.)

In the inhomogeneous models,

H(t0, x
i) = H

(
t0, x

i (z)
)
⇒ H0(z)

Ωm(t0, x
i) = Ωm

(
t0, x

i (z)
)
⇒ Ωm(z)

Volume expansion
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In the inhomogeneous universe,

H0 and Ωm generally become z-dependent,

due to the inhomogeneity in θ(t, xi) and ρ(t, xi).

H0(z) = H̄0
(
1 + h1 z + h2 z

2 + · · ·
)

Ωm(z) = Ω̄m
(
1 + ω1 z + ω2 z

2 + · · ·
)

h1, h2,ω1,ω2, · · · are
the post-Friedmannian corrections.
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In the inhomogeneous universe,

H0 and Ωm generally become z-dependent,

due to the inhomogeneity in θ(t, xi) and ρ(t, xi).

H0(z) = H̄0
(
1 + h1 z + h2 z

2 + · · ·
)

Ωm(z) = Ω̄m
(
1 + ω1 z + ω2 z

2 + · · ·
)

h1, h2,ω1,ω2, · · · are
the post-Friedmannian corrections.

Any model which has the Friedmann limit

(including LTB model)

can be expressed in this way

in the region z < 1
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The luminosity distance

with the post-Friedmannian corrections

DL(z) =
c

H̄0

(
z + d̃2 z

2 + d̃3 z
3 + · · ·

)

d̃2 =
1

4

(
2 − Ω̄m + 2ΩΛ−4 h1

)

d̃3 =
1

8

(
Ω̄2
m
+ 4ΩΛ

2 − 4 Ω̄mΩΛ − 2 Ω̄m − 4ΩΛ
)

+(terms with h1, h2,ω1)
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From d̃2，̃d3 obtained by the data fitting,
assuming the Friedmannian DL(z),

calculate the cosmological parameters...
even if the “bare” value isΩΛ = 0,

Ωeff
Λ
≡ d̃2

(
2 d̃2 − 1

)
− d̃3

=
1
8

{
6h1Ω̄m +

4
3
ω1Ω̄m − 4h1 + 8 (h1)2 + 8h2

}

The post-Friedmannian corrections behave asΩΛ!
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From d̃2，̃d3 obtained by the data fitting,
assuming the Friedmannian DL(z),

calculate the cosmological parameters...
even if the “bare” value isΩΛ = 0,

Ωeff
Λ
≡ d̃2

(
2 d̃2 − 1

)
− d̃3

=
1
8

{
6h1Ω̄m +

4
3
ω1Ω̄m − 4h1 + 8 (h1)2 + 8h2

}

The post-Friedmannian corrections behave asΩΛ!H0(z) = H̄0
(
1 + h1 z + h2 z2 + · · ·

)

Ωm(z) = Ω̄m
(
1 + ω1 z + ω2 z2 + · · ·

)

199

From d̃2，̃d3 obtained by the data fitting,
assuming the Friedmannian DL(z),

calculate the cosmological parameters...
even if the “bare” value isΩΛ = 0,

Ωeff
Λ
≡ d̃2

(
2 d̃2 − 1

)
− d̃3

=
1
8

{
6h1Ω̄m +

4
3
ω1Ω̄m − 4h1 + 8 (h1)2 + 8h2

}

The post-Friedmannian corrections behave asΩΛ!
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Ωm is also dressed
in the inhomogeneous corrections

Ωeff
m ≡ 2

(
1 − d̃2

) (
1 − 2 d̃2

)
− 2 d̃3

=

(
1 + 3

2
h1 +

1
3
ω1

)
Ω̄m + 3h1 + 2(h1)2 + 2h2.

Ω̄m = Ωm(z = 0)
H0(z) = H̄0

(
1 + h1 z + h2 z2 + · · ·

)

Ωm(z) = Ω̄m
(
1 + ω1 z + ω2 z2 + · · ·

)
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So far, 
the data is

Perlmutter et al. (1999)
The Supernova 

Cosmology Project

202

What about
the new data in 

the 21st century?
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Supernova
Legacy Survey

(2006)
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ABSTRACT

We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy
Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the
Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands, as part of the CFHT Legacy
Survey (CFHTLS). Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae
and to measure their redshift. With this data set, we have built a Hubble diagram extending toz = 1, with all distance measurements involving
at least two bands. Systematic uncertainties are evaluated making use of the multi-band photometry obtained at CFHT. Cosmological fits
to this first year SNLS Hubble diagram give the following results: ΩM = 0.263 ± 0.042 (stat) ± 0.032 (sys) for a flat ΛCDM model; and
w = −1.023 ± 0.090 (stat) ± 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the
recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

Key words. supernovae: general – cosmology: observations – cosmological parameters

! Based on observations obtained with MegaPrime/MegaCam, a
joint project of CFHT and CEA/DAPNIA, at the Canada-France-
Hawaii Telescope (CFHT) which is operated by the National Research
Council (NRC) of Canada, the Institut National des Sciences de
l’Univers of the Centre National de la Recherche Scientifique (CNRS)
of France, and the University of Hawaii. This work is based in
part on data products produced at the Canadian Astronomy Data
Centre as part of the Canada-France-Hawaii Telescope Legacy Survey,
a collaborative project of NRC and CNRS. Based on observa-
tions obtained at the European Southern Observatory using the
Very Large Telescope on the Cerro Paranal (ESO Large Programme
171.A-0486). Based on observations (programs GN-2004A-Q-19,
GS-2004A-Q-11, GN-2003B-Q-9, and GS-2003B-Q-8) obtained at
the Gemini Observatory, which is operated by the Association of
Universities for Research in Astronomy, Inc., under a coopera-
tive agreement with the NSF on behalf of the Gemini partnership:
the National Science Foundation (USA), the Particle Physics and
Astronomy Research Council (UK), the National Research Council
(Canada), CONICYT (Chile), the Australian Research Council
(Australia), CNPq (Brazil) and CONICET (Argentina). Based on ob-
servations obtained at the W.M. Keck Observatory, which is op-
erated as a scientific partnership among the California Institute of
Technology, the University of California and the National Aeronautics

1. Introduction

The discovery of the acceleration of the Universe stands as a
major breakthrough of observational cosmology. Surveys of
cosmologically distant Type Ia supernovae (SNe Ia; Riess et al.
1998; Perlmutter et al. 1999) indicated the presence of a new,
unaccounted-for “dark energy” that opposes the self-attraction
of matter and causes the expansion of the Universe to accel-
erate. When combined with indirect measurements using cos-
mic microwave background (CMB) anisotropies, cosmic shear
and studies of galaxy clusters, a cosmological world model has
emerged that describes the Universe as flat, with about 70% of
its energy contained in the form of this cosmic dark energy (see
for example Seljak et al. 2005).

Current projects aim at directly probing the nature of the
dark energy via a determination of its equation of state param-
eter – the pressure to energy-density ratio – w ≡ pX/ρX , which
also defines the time dependence of the dark energy density:
ρX ∼ a−3(1+w), where a is the scale factor. Recent constraints

and Space Administration. The Observatory was made possible by the
generous financial support of the W.M. Keck Foundation.
!! Tables 7–9 are only available in electronic form at
http://www.edpsciences.org

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20054185
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5.4. Cosmological fits

From the fits to the light-curves (Sect. 5.1), we computed a
rest-frame-B magnitude, which, for perfect standard candles,
should vary with redshift according to the luminosity distance.
This rest-frame-B magnitude refers to observed brightness, and
therefore does not account for brighter-slower and brighter-
bluer correlations (see Guy et al. 2005 and references therein).
As a distance estimator, we use:

µB = m∗B − M + α(s − 1) − βc
where m∗B, s and c are derived from the fit to the light curves,
and α, β and the absolute magnitude M are parameters which
are fitted by minimizing the residuals in the Hubble diagram.
The cosmological fit is actually performed by minimizing:

χ2 =
∑

objects

(
µB − 5 log10(dL(θ, z)/10 pc)

)2

σ2(µB) + σ2
int

,

where θ stands for the cosmological parameters that define the
fitted model (with the exception of H0), dL is the luminos-
ity distance, and σint is the intrinsic dispersion of SN abso-
lute magnitudes. We minimize with respect to θ, α, β and M.
Since dL scales as 1/H0, only M depends on H0. The definition
of σ2(µB), the measurement variance, requires some care. First,
one has to account for the full covariance matrix of m∗B, s and c
from the light-curve fit. Second, σ(µB) depends on α and β;
minimizing with respect to them introduces a bias towards in-
creasing errors in order to decrease the χ2, as originally noted
in Tripp (1998). When minimizing, we therefore fix the val-
ues of α and β entering the uncertainty calculation and update
them iteratively. σ(µB) also includes a peculiar velocity con-
tribution of 300 km s−1. σint is introduced to account for the
“intrinsic dispersion” of SNe Ia. We perform a first fit with an
initial value (typically 0.15 mag), and then calculate the σint

required to obtain a reduced χ2 = 1. We then refit with this
more accurate value. We fit 3 cosmologies to the data: a Λ cos-
mology (the parameters beingΩM andΩΛ), a flatΛ cosmology
(with a single parameterΩM), and a flat w cosmology, where w
is the constant equation of state of dark energy (the parameters
are ΩM and w).

The Hubble diagram of SNLS SNe and nearby data is
shown in Fig. 4, together with the best fit Λ cosmology for
a flat Universe. Two events lie more than 3σ away from the
Hubble diagram fit: SNLS-03D4au is 0.5 mag fainter than the
best-fit and SNLS-03D4bc is 0.8 mag fainter. Although, keep-
ing or removing these SNe from the fit has a minor effect on
the final result, they were not kept in the final cosmology fits
(since they obviously depart from the rest of the population)
which therefore make use of 44 nearby objects and 71 SNLS
objects.

The best-fitting values of α and β are α = 1.52 ± 0.14
and β = 1.57 ± 0.15, comparable with previous works using
similar distance estimators (see for example Tripp 1998). As
discussed by several authors (see Guy et al. (2005) and ref-
erences therein), the value of β does differ considerably from
RB = 4, the value expected if color were only affected by
dust reddening. This discrepancy may be an indicator of intrin-
sic color variations in the SN sample (e.g. Nobili et al. 2003),

SN Redshift
0.2 0.4 0.6 0.8 1

Bµ

34

36

38

40

42

44

)=(0.26,0.74)ΛΩ,mΩ(

)=(1.00,0.00)ΛΩ,mΩ(

SNLS 1st Year

SN Redshift
0.2 0.4 0.6 0.8 1

 ) 0
 H

-1
 c

L
 ( 

d
10

 - 
5 

lo
g

Bµ

-1

-0.5

0

0.5

1

Fig. 4. Hubble diagram of SNLS and nearby SNe Ia, with various cos-
mologies superimposed. The bottom plot shows the residuals for the
best fit to a flat Λ cosmology.

and/or variations in RB. For the absolute magnitude M, we ob-
tain M = −19.31 ± 0.03 + 5 log10 h70.

The parameters α, β and M are nuisance parameters in the
cosmological fit, and their uncertainties must be accounted for
in the cosmological error analysis. The resulting confidence
contours are shown in Figs. 5 and 6, together with the product
of these confidence estimates with the probability distribution
from baryon acoustic oscillations (BAO) measured in the SDSS
(Eq. (4) in Eisenstein et al. 2005). We impose w = −1 for the
(ΩM,ΩΛ) contours, and Ωk = 0 for the (ΩM, w) contours. Note
that the constraints from BAO and SNe Ia are quite comple-
mentary. The best-fitting cosmologies are given in Table 3.

Using Monte Carlo realizations of our SN sample, we
checked that our estimators of the cosmological parameters
are unbiased (at the level of 0.1σ), and that the quoted
uncertainties match the observed scatter. We also checked
the field-to-field variation of the cosmological analysis. The
four ΩM values (one for each field, assuming Ωk = 0) are
compatible at 37% confidence level. We also fitted separately
the Ia and Ia* SNLS samples and found results compatible at
the 75% confidence level.
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Preliminary results

•zone-fittings converge only in the 
range: z < 0.1, 0.5 < z

•multi-zone inhomogeneity?

•transient zone?

•z-dependence of H0, Ωm

explicitly shown?
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Our results give
constraints on the 
inhomogeneous 

models.
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Any models which (try to) 

explain SN m-z relation 

without Dark Energy, 

shoud have the following

properties:

209

1.
shoud have 

Friedmann limit
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2.
behaves as if
Friedmann 

in low-z region
(z < 0.1 ~ 0.2)

211

3.
behaves as if
Friedmann 

in high-z region
(0.3 ~ 0.5 < z)

212



4.
mild 

inhomogeneity 
in H0, Ωm

ΔH0 ~-13%, ΔΩm ~ 29%

213

Still you prefer 
homogeneity?
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4%

22%

74%
Atoms

If you stick to
the homogeneity,

Dark Energy

Dark Matter

you also need 
the Dark Side of Energy.

215

Vader was seduced 
by the dark side of 

the Force...

216



Don’t be seduced by 
the Dark Side of energy!

217

May the Force be with 

the  inhomogeneous 

cosmologists.

218

May the Force be with 

us.
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kasai@phys.hirosaki-u.ac.jp
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