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The need for Dark Energy

Void vs Dark
Energy

@ In Standard Cosmology we use the
Friedmann-Lemaitre-Robertson-Walker model.

Motivations

@ We compute D, (or Dp) and z

@ We use this to interpret several observations (SNla,
Hubble constant, CMB, Baryon Acoustic Oscillations,...)

@ To fit the observations we need a p < 0 term
(“Dark Energy”).

@ Problem: We do not understand

@ the amount (why of the same amount as Matter today)?
@ its nature (is it vacuum energy?)
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Two main pieces of evidence

Void vs Dark

Energy SNla is incompatible with deceleration (independently
on other observations)

Motivations @ Assuming them as standard candles.

@ Assuming them not exactly as standard candles

@ CMB: best-fit with power-law (k"s) primordial spectrum

has Q) ~ 0.7.
But good fit? also with Q5 = O(flat) : requirements

@ low-h (0.45)
@ non-standard primordial spectrum

@ The two dataset,
@ SNla
@ CMB together with measured h: 0.55 < h < 0.8

are strong evidence for Qp ~ 0.7.
@ Other observations (BAO and LSS...) fit consistently
2Blanchard et al. ‘03, Sarkar and Hunt '04, '07
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Is there any alternative?

Void vs Dark
Energy

Motivations @ Look for some interesting critical point of view and other
logical possibilities

@ What happens to observations when we have
departure from a homogeneous model?

@ Can we accomodate for all this evidence if we relax (to
some degree) homogeneity?
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Homogenous Universe: a good approximation?

Void vs Dark
Energy

@ Atz > 1 (CMB epoch, for example) tiny density
Motivations fluctuations on all observed scales.

@ Itis a good approximation

@ ..atlate times ¢ = ‘%" > 1 for all scales
L < O(10)/h Mpc (1% of Hubble radius)

@ Superclusters upto few hundreds of Mpc (10% of
Hubble radius), nonlinear objects (“cosmic web")
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SDSS data
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Three physical effects of inhomogeneities

Void vs Dark
Energy

In general:

Motivations
o Backreaction

perturbations affect the background

Light meets voids and structures. Do they compensate?

What if we live in a local void?
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A few words on backreaction

Void vs Dark

Energy @ Averaging of Einstein’s Equations
Nonlinearity = extra terms in Friedmann equations®

@ Consider a comoving inhomogeneous metric (p=0)
ds? = —dt? + a?(t)dx'dx’h(t, x)

Backreaction

@ For a comoving domain D:

1/3
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BG.EIIis-WAStoeger '67, Futamase, Sakai et al, Buchert '95, S. Rasanen '03 ,
E.Kolb-S.Matarrese-A.Riotto-A. N. ‘04 , A. N. '06
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The extra terms

Void vs Dark
Energy

@ Where

Backreaction

= (o)o— Qb (R)p
Peft PIP = 167G 167G
_ Qb (R)p
Pet = ~T6:6 ' 287G’

@ The real question: how large is it?
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Perturbatively: 2" order

Void vs Dark

Energy @ On a large Domain the dominant term has the form* :

Hb—H 25 1 ——>—
Backreaction H = a a2H2 <90v S0>

2
a hFMpc‘1> >
=A2—<7 /d T?
2 Ho e (a)

where A ~ 105, T = Qhe =28~ V2% /2y

@ Largest contribution from O(10 — 50)Mpc/h

Hp —H
H

~ 107°

2
@ Small, but not 10~1°1 Enhanced by ("WEOQ)

4L. Hui-U. Seljak '95, S. Rasanen’03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04,-...
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Power counting

Void vs Dark

Energy @ What about higher (n'") orders 5?
@ They go as

(p(V2p)"1)

Backreaction
@ We can write the n'" order as
10756n71

where roughly

A /hrMpct lem
‘=11z Ho

with
Int = /quZ(q) ~ 0.02

A.N.’06
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Higher orders

Void vs Dark
Energy

e = O(1) today

Backreaction

@ ...each term in the series is of O(10°) !

Do they sum up to 10~° or more??

Need non-perturbative treatment

Note: e < 1 at high z
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Photons in inhomogeneous metric

Void vs Dark
Energy

@ Even in absence of average effect on H(z) : corrections
to photon trajectories

Light
propagation

@ In fact, actually we measure distances D and redshifts z
@ All information from expansion comes from plots D — z
@ Cannot disentangle this from backreaction

@ Compute £2 and 42 in the presence of structures
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LTB exact solutions

Void vs Dark

Energy @ Consider Lemaitre-Tolman-Bondi exact solutions of
E.E. (with p = 0) which is

@ inhomogeneous

Light q
propagation @ nonlinear

@ Spherically symmetric

@ We consider two configurations:

@ LTB spheres embedded in FLRW ("Swiss-Cheese")

@ LTB with shells of periodically varying density ("Onion")

@ We study null geodesic in this metric
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@ Net effect from one hole® : AZ ~ (L/ry)%(6)

@ At 2" order usual Rees-Sciama effect (L /ry )62

@ f(0) does not compensate the suppression for § > 1
@ Tight packing : Nhges x O(L/ry)3 ~ O(L/ry)?

@ Still small (for late acceleration)

@ Interesting in the CMB, as a Rees-Sciama effect.

6'I'. Biswas-A. N. '06-'07
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Distance

Void vs Dark
Energy

@ Net effect scales as A% ~ (L/ry)*f(9) 7

@ f(0) does not compensate the suppression for § > 1
@ Tight packing: NnoesO(L/11)3 = O(L/ry)

@ Not so small...

@ But it should have zero angular average (unlike z)®

7Brouzakis-Tetradis-Tzavara ’06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

SS. Weinberg '76, Brouzakis et al. '06-'07
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Beyond LTB?

Void vs Dark
Energy

@ Reliable result or limited by the symmetries of the
model?

@ LTB model swiss-cheese: special case
@ The cheese feels no backreaction by construction
@ What happens without spherical symmetry?

@ Szekeres swiss-cheese model with asymmetric holes
(soreiko 08) Effects of similar size

@ But still special: the cheese feels no backreaction of the
holes
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A local fluctuation?

Void vs Dark
Energy

@ Suppose that we live in a peculiar local region

@ = low z observations may be very different from
average.

Local Void

@ One realizes that acceleration is inferred comparing low
z with high z...

@ Can this mimic acceleration °?

%Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat ‘05, Alnes et
al. '05, Mansouri et al. 06, Biswas & A.N.'07, Garcia-Bellido and
Haugboelle 08, Zibin et al. '08 ...
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Earlier literature

Void vs Dark
Energy

@ wustapha, Hellaby, Ellis '97:. Show that LTB can reproduce any
observations

Local Void

@ ceerierso; Showed that LTB can mimic ACDM

@ mmita0: Compensated Void 200 — 300 Mpc/h scale
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Qualitatively

Void vs Dark
Energy

@ Consider a “compensated Void” : a spherical Void plus
an external shell of matter
(on average same density as “external” FLRW)

Local Void @ Assumption: we live near the center

@ A void expands faster than the “external” FLRW

@ So, nearby objects inside the void redshift more

@ This can mimic acceleration (as we will see...)

@ How much contrast 6 and how large L is needed?
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About Voids

Void vs Dark
Energy

@ Before going to the quantitative analysis...

Local Void

@ Let’s review some literature and observations on Voids
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Other uses of Voids

Void vs Dark .
Energy noue and si'06: SOMe features of the low multipole

anomalies in the CMB data could be explained by a
pair of huge Voids (L ~ 200 Mpc/h, § ~ —0.3)

@ The CMB has a Cold Spot (v cruzetal (osand 07)): it could be
Local Void explained by another similar Big Void (inoue and sik '06)

@ The Cold Spot in the CMB claimed to be correlated with
an Undel’dense I’egion in the LSS (Rudnick, Brown and Williams 07,
but see Hutererand )

@ It could be detected via lensing (s. pas and . spergei08) and via
non-gaussian coupling Rees-Sciama effect - lensing (

|.Masina and A.N., in preparation)



Observational Status

Void vs Dark
Energy

@ Some observational evidence for a local large
underdense region (~ 25% less dense, r ~ 200 Mpc/h)
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(Frith et al. Mon. Not. Roy. Astron. Soc. 345, 1049 (zooa))

Local Void

@ It would represent a 40 fluctuation, at odds with ACDM.




Observational Status

Void vs Dark
Energy

@ Some observational evidence for a local large
underdense region (~ 25% less dense, r ~ 200 Mpc/h)
from number counts of galaxies (2MASS)

(Frith et al. Mon. Not. Roy. Astron. Soc. 345, 1049 (2003))

Local Void

@ It would represent a 40 fluctuation, at odds with ACDM.

@ Many Large Voids identified via ISW effect in the SDSS
LRG catalog (about 100 Mpc/h radius) (cranettetal. 0s)

@ Also in contradiction with ACDM: P < 108 (sarkar & Hunt 08)




Figure: Granett, Neyrinck & Szapudi '08
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Large bulk motion?

Void vs Dark
Energy

@ Recent measurement (Kashlinsky et al.’08): very large
coherent motion on 300Mpc/h scale, inconsistent with
ACDM

Local Void

@ Could be due to very large scale inhomogeneous
matter distribution

@ Watkins, Feldman & Hudson '08: use peculiar velocities
of various (4500) objects in a 100Mpc /h radius.
Find 400km /sec (expected 100km/sec)
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@ Local Void
@ Minimal Void
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A “Minimal” Void ?

Void vs Dark
Energy

® What is the size we need to mimick DE?

@ It will turn out that a Minimal Void needs at least the
same size (for riess o7 SNIa and WMAP)

® ryoig ~ 200 — 250 Mpc/h and § ~ —0.4

@ Problem (1): on this scale the typical contrast is:
, using linear and Gaussian spectrum

@ Can we ever get huge Voids?
@ Percolation of Voids?
@ Non-standard structure formation?
@ Non-gaussianity?
@ Nucleation of primordial Bubbles
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Need for a Larger Void

Void vs Dark
Energy

Problem (II): even larger size seems necessary for
other observations

@ For UNION (..) data 500Mpc/h required and the fit is
not very good: y? = 343 (306 d.o.f.)

@ A very good fit obtained with (2 Gpc) (sarcia-eliido & Haugboelle)
@ Or adding open curvature

@ Need for a Large Void also for BAO: a better fit is
obtained with at least (1 Gpc) (Garcia-Bellido &
Haugboelle).
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@ Building the model
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Lemaitre-Tolman-Bondi metrics

Void vs Dark
Energy

R2(r,t)

2 . A4+2
08" = —d T k()

dr2 + R2(r,t)(d6? + sin® 6d ¢?)

with comoving coordinates (r, 6, ) and proper time t.

@ Spherically symmetric.

Building the model

@ Einstein equations:

1R2(r,1) GM(r)  r2k(r)
2R2(r,t)  R3(r,t)  R2(r,t)’
arp(rt) = — MO

R/(r,t)R2(r,t)’



LTB metrics

Void vs Dark
Energy

R'2(r,t)

2 _ A2
ds” = —0 + T ork(n)

dr2 + R(r,t)(d6? + sin? 6d ©?)

Building the model



LTB metrics

Void vs Dark
Energy

R'2(r,t)

2 _ A2
R ()

dr2 + R(r,t)(d6? + sin? 6d ©?)

It has the solutions:
@ Fork(r) >0 (k(r) < 0),
GM(r)
2r2|Kk(r)|
GM(r)

t—t(r) = W[Sin h(u) —u].

Building the model R

[cosh(u) — 1], (4.1)

1/3
R(r,t)=[96“2”“)] ft — ()
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Choosing the functions

Void vs Dark

Energy @ t,(r) = O for our purposes, and “Gauge” choice:

M(r) o r3

@ k(r) contains all the physical information about the
profile.

Building the model

@ k =0 flat FLRW, k = +1 open/closed FLRW.

@ The idea is to describe structure formation
(start with 6(r, ;) < 1 and end up with 6(r, thow) > 1)

@ We play with k(r) to describe o(r, t;).
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LTB merged to FLRW

Void vs Dark
Energy

@ Matching of an LTB sphere (of radius L) to FLRW:

k’'(0) = K'(L)=0,
47

Building the model We use:
° 2
4
K(r) = Kmax {(E) — 1] (forr <L)
k(r) = 0 (flat) (forr > L)

@ Two parameters, L and Kpax.
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@ Roughly:
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A = T e
where (p)(t) = M—g and €(r) = 3k(r) +rk’(r).

67t2’
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The density

Void vs Dark
Energy

@ Roughly:

N {p)(t)
P00 = T oA
where (p)(t) = %fz’ and (r) = 3k(r) +rk'(r).

Building the model

@ ¢ < 1linear growth o a(t) o t2/3
@ ¢ notsmall: 6 grows rapidly (as in Zel'dovich approx)

@ We work at most with 6 ~ O(1).



The density profile

Void vs Dark
Energy

Building the model
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@ Light propagation
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Redshift

Void vs Dark
Energy

@ Solve for t(r) along a ds? = 0 trajectory

@ Then solve for

dz (14 z(r))R'(r,t(r))

dr 1+ 2r2k(r)

Light propagation

@ The result z(r) can be found numerically

@ We also have some very good analytical
approximations
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Luminosity (Angular) Distance

Void vs Dark o q q o .
Nt @ Always in GR, luminosity distance and angular distance:

DL = Da(1 +2)°.

op — A _ dfsdos VGingss _ disdos o
A= dfoddo dfod o ’

Light propagation



Luminosity (Angular) Distance

Void vs Dark o q q o .
Nt @ Always in GR, luminosity distance and angular distance:

DL = Da(1+2)°.

*)
D2 — dA _ dfsd¢s\/GeeGss _ dbsds R?
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Luminosity (Angular) Distance

Void vs Dark o q q o .
Nt @ Always in GR, luminosity distance and angular distance:

DL = Da(1+2)°.

*)
D2 — dA _ dfsd¢s\/GeeGss _ dbsds R?
AT dQ ddoddo d0oddo S
T . @ If observer in the center:
D =R?[s.

@ For generic observer (but radial trajectory):

B s R'(r,t(r)
SIS (RO / (1+2E(r))(1+z<r))R(r,t(r))2”"> ’




Analytical approximation

Void vs Dark
Energy

V2(cosh(u) — 1)

f -1 4.2
32/3(sinh(u) — u)2/3 (4.2
up = 6%3(sinh(u) —u)'/3. (4.3)
Then, one can use this function in the following equations:
(1) = 10— g7 ML+ (k)] (4.4)
2 287
Light propagation . i 47'("7 Mr 2 2

1+2z(r) = (T(r)> exp[ 9 f(y 75k (r)) (4.5)
Di(r) = gver(r)Z[l +H(Pk(ONIL +2(N]  (4.6)

- 1/3

3Ho
1/3
7 = (9—ﬁ> (4.9
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High and low z

Void vs Dark
Energy

@ Evidence for acceleration comes from _ between:

@ measurements at low redshift _)
o high-z SN (roughly _)

@ We choose large ryoj ¢ (at z ~ 0.08 — 0.09)

SNia Hubbe diagram @ = The Local Bubble is different from the average.

Outside just matter dominated (even if there are other
Bubbles, their effect is small)
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Void vs Dark
Energy

@ Athigh z (z 2 0.1), just matter dominated Universe:

2

out

Deds(z) ~ o 1+z-v1+2z).

@ Atlow z "open-like" Universe with a different H

@ Two (reduced) Hubble parameters: h and hgy;

SNla Hubble diagram

@ Rapid transition near the shell-like structure

@ h corresponds to what is measured



Am for different models

Void vs Dark
Energy

@ Magnitude is m = 5Log10D(2)
@ The open “empty” Universe is subtracted (Qx = —1)

Zjump =0.085; dcentre=—0.48

SNla Hubble diagram




m — z diagram: Riess data

Void vs Dark .
Eqergy Zjymp=0.085; JcenTre=-0.48

0 025 05 075 1 125 15 175

SNla Hubble diagram
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Finding the best fit

Void vs Dark
Energy

@ We fix several values of L

@ What matters is just the Jump: J = hOhUT

@ This is also related to the central density contrast:
J =2~ (1)

SNla Hubble diagram

@ We vary 7 and compute the x2.



Fitting SNla with a Jump

Void vs Dark

Energy Riess et al. dataset, asto-phios11576 (182 SNIa)
Zjump= [0.09,0.08,0.07,0.06,0.05]  (from bottom to top)
40

230 |
220
Xz 210

200

SNla Hubble diagram 190

180

1.05 1.1 1.15 12 1.25 13 1.35
Hin/Hout

Figure: The red dashed lines are 10% and 1% goodness-of-fit
(182 data points)




LTB Void fit

Void vs Dark X _
Energy ZJ ump = 0085

200 ¢
1975 ¢
195 ¢

¥ 1925 ¢
190 ¢
187.5 ¢
185 |
1825 ¢

SNla Hubble diagram

11 115 12 125 13
Hin/Hout

Figure: Here we use the full LTB model. We show 10, 20, 30 and
4¢ intervals (using likelihood « e=X*/2).
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Table: Comparison with data (full data set of Riess et al.)

Model x? (181 d.o.f.)
ACDM (with Qy = 0.27,Q5 = 0.73) 160
EdS (with Qy = 1,05 = 0) 274
Void (1/(62) ~ 0.4 on L = 250/hMpc) 182
Remarks:
SNiaHubbl diagram @ With instrumental error only: no smooth curve can give a
good fit

@ Estimated error from intrinsic variability added in quadrature



'?: Riess data
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Energy

Table: Comparison with data (full data set of Riess et al.)

Model x? (181 d.o.f.)
ACDM (with Qy = 0.27,Q5 = 0.73) 160
EdS (with Qy = 1,05 = 0) 274
Void (1/(62) ~ 0.4 on L = 250/hMpc) 182
Remarks:
SNiaHubbl diagram @ With instrumental error only: no smooth curve can give a
good fit

@ Estimated error from intrinsic variability added in quadrature
@ Not as good as ACDM

@ Becomes better including curvature Q outside
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Table: Comparison with data (Union data)

Model x? (307 d.o.f.)
ACDM (with Qy = 0.27,Q, = 0.73) 304
Void (1/(62) ~ 0.4 on L = 500/hMpc) 340
Void (1/(62) ~ 0.7 on L = 2000/hMpc) 304

SNla Hubble diagram Re mar ks .
@ It seems necessary to consider a larger Void (Gpc scale)

@ Or add curvature? (work in progress)
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0.6

0.4F

0.2F

-0.0F

H - Hocom

02T

-0.4F

I e

0.6t .
0.01 0.10
SNla Hubble diagram Redshift

Figure: Taken from Garcia-Bellido & Haugboelle '08
(similar fits also in Zibin et al. '08)
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The ACDM fit

Void vs Dark
Energy

@ We try to fit the WMAP 3-yr data

@ We look at TT and TE correlations, using CosmoMC
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How do we fit?

Void vs Dark
Energy

@ In principle: we should compute propagation in EAS
from z = 1100 to z ~ 0.1, and then in the Bubble

@ Possible “secondary” effects in the Bubble:
o Small offset to Da and To of O(Ivoi d/rtor )?
Small because of compensation
@ off-center location: dipole and integrated effect (low-I)
@ Non-sphericity (again effect on low-|)

@ We do not consider them: just EAS with hg; , with
some assumptions on the primordial spectrum:

@ ng plus running as
@ Flat spectrum plus bump (&s iN P Huntand s. Sarkar, arxiv:0706.2443

[astro-ph]; A. Blanchard, M. Douspis, M. Rowan-Robinson and S. Sarkar, Astron. Astrophys.
412, 35 (2003) [arXiv:astro-ph/0304237]. )



Priors (A\CDM)
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Energy

The usual prior set is:

@ Allow for nonzero Qj.
@ Power-law spectrum with index ns.
@ (eventually with running as)

o P(K) o ks (ko)+3In(k /ko)as
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Priors: without A

Void vs Dark
Energy

A different prior set, that we use:

@ Not allow for Q.
@ Power-law spectrum with index ng.
@ with running as

o P(K) o ks (ko) +3In(k /ko)axs

@ (we also may allow for some curvature)



Fit to WMAP3
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Ed5; alpha_s=0
EdS; alpha_s=-0.163

Ed5; alpha_s = -0.13%; Omega_k = -0.05
Lambda COM

= WMAP3 from Spergel et al.

T2 1 (14+1) CI (TT} /2 pi {microK ~2)

WMAP




Void vs Dark
Energy

Goodness-of-fit

Total
Model X G.F Xt G.F e G.F
Concordant ACDM 10389 | 4.7% | 14552 | 11.3% | 3538.6 | 41%
EdS as = 0 1124.6 0% 1711.9 0% 3652.3 6%
EdS as £ 0 1057.8 | 1.9% | 14755 | 57% | 35774 | 24.6%
EdS as, O — —0.050 | 1048.7 | 2.9% 1466 7.9% | 35609 | 31.1%

Table:

15t column: high-I TT (31 < | < 1000)
2"d column: high-l TT (31 < | < 1000) and TE (24 < | < 450)
3 column: total of TT (2 < | < 1000) and TE (2 < | < 450)
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Result for parameters

Void vs Dark

Eneroy The EdS model, with running, has:

@ low hoyr (about ~ 0.45)
It has to be consistent with the SNla analysis and the
local measurements of h

@ low ng (about ~ 0.73)
and large negative as (about ~ —0.16)

@ larger value of Qy, /Qy, (around 10 instead of 6)

® OyhZ, (~0.0181399%) consistent with BBN constraint

(which is 0.017 < Q,h2,; < 0.024, at 95% C.L.)

out



Parameter values

Void vs Dark
Energy

ACDM EdS, s = 0 Eds, as Z0 | Eds, s, O Z 0
QphZ,¢ 0.0227 0,02 0.0227 9% 0.0187 0% 0.01979,%02
Qmh2,, 0.1061%,%2% 0.19810,008 0.18610,0%% 0.1671%00%

Qp 0.759 10,07, 0 0 0
e 11.734%45% 8.6071 555 13.754122% 13.34272%5 |
[ 0 0 0 —0.05
ns 0.967 0%, 0.947CT2% DN Ezii 0.76170 %%
as 0 0 —0.1617%%0 —0.137%%%
105As 208417518 | 2545073135 [ 2530275182 23975721 |
Qm /2 Gy 9.1197031L 10.094 70,52 8.9207051Z
hout 72857 - 050 | 4685770088 | 4523700 42069000
Age/GYr | 13.73370%0 1 130087030 | 14.40870,5%° 15.33870502
o8 X 1.01270056 0.910%007 0.86270% |
T 0.09579,%72 0.0471%%37 0.07979,%2% 0.0811%%20

COSMOMC Runs

Table: Most likely parameter values with 1 o errors for the various




Parameter likelihood
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oo8 , o015 o002 0175 018 0185, 019 0195
th Q h
. o
065 07 075 08 022 -0z -018 -016 -014 012 -01
n @
WMAP
95 10 105 11 a4 445 a5 455 46 465
Q./9, Hou

Figure: likelihoods to WMAP 3-yr for the run “EdS with as”



Parameter likelihood
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Energy

Figure: Contour likelihood plots to WMAP 3-yr for the run “EdS
with O[s”
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together

@ Putting things together
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Is this compatible with local h?

Void vs Dark i int:
i @ A crucial point: we have

"] a IOW hout
@ aconstrainton J = h/hout

@ We get a constraint on h . Compatible with local
observations?

@ h=0.72+0.08 from HST (WA L. Freedman et al., Astrophys. J. 553, 47
(2001) )

@ h=0.62+0.01 £ 0.05 from HST with corrected

Cepheids (a. sandage et al., Astrophys. J. 653, 843 (2006))

Putting things
together

@ h = 0.59 £ 0.04 from Supernovae (parodi, Saha, Sandage and
Tammann, arXiv:astro-ph/0004063. )

o h= 054;82 SZ effect (Z ~ 1) (E. D. Reese et al. Astrophys. J. 581, 53

(2002))



Parameter Contours
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Putting things
together

Figure: 1-0 and 2-o Contour plots for h vs. hgy.
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Summarizing the constraints

Void vs Dark
Energy

At 95% C.L. we have (for L ~ 250/h Mpc) :

© 1.17< 7 <1.25= 042 < || < 0.58

(but note that the average +/(2) is smaller)

® 0.44 < hoy < 0.47

Putting things

e @ 0.51 <h<0.59
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The bump model

Void vs Dark
Energy

The same happens for the model with a bump in the
primordial spectrum (s. sarkar et al. ‘03 and '07)

@ The bump is at a scale of about 100/h Mpc
@ It could come from two rapid phase transitions

@ It gives a good fit to WMAP (better than ACDM)

Putting things

together

@ The original proposal had too low h (~ 0.44)
= Combine with the Minimal Void scenario



h in the Bump model

Void vs Dark
Energy

Putting things
together

Figure: 1-0 and 2-o Contour plots for h vs. hgy.
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Baryon Acoustic Oscillations

Void vs Dark
Energy

Measurement of baryon acoustic peak in the galaxy
diStribution (Eisenstein etal, 2005).

@ The position of the peak measures the ratio of the
sound horizon at recombination vs. angular distance at
z=0.35

@ It constrains two quantities: Qmh? and Da(0.35)

@ But it also depends on the spectral index ng:

Dy = 1370464 and Qnh? = 0.130 (ns/0.98)~%2+0.011

Oth .
cosrenrological o Caveat.

@ Constraints are derived using ACDM

observations



Baryon Acoustic Oscillations
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@ Using ng ~ 0.73 the constraint is:

Qmh2,; =0.18540.011, (6.9)

@ It agrees with our value (0.205 + 0.01) within 2¢.
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@ It agrees with our value (0.205 + 0.01) within 2¢.

@ On the other hand:
Da(0.35) = 1375Mpc ~ for ACDM
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Baryon Acoustic Oscillations

Void vs Dark
Energy

@ Using ng ~ 0.73 the constraint is:

Qmh2,; =0.18540.011, (6.9)

@ It agrees with our value (0.205 + 0.01) within 2¢.

@ On the other hand:
Da(0.35) = 1375Mpc ~ for ACDM
Da(0.35) = 1850 Mpc for EdASwith hgy ~ 0.45,

CUTENN @ Not consistent with Eisenstein etal., 2005:
cosmological
observations

Dy (0.35) = 1370 + 64 Mpc,
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Problem with BAO

Void vs Dark
Energy

@ The problem is the low value of hgy from CMB!
(hout ~ 0.56 would work...)

@ Possible ways out:

@ Gpc Void (Alnes et al., Garcia-Bellido & Haugboelle).
Flts well, but analysis with full CMB not done yet. It can
also fit D(035)/D(02) (Percival et al.)

Other @ Fit CMB with higher h
cosmological (Non-compensated Void?)

observations
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for the radial direction as Az (model-independent)
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Radial BAO

Void vs Dark
Energy

@ It is possible to 00K (caztanagaetaros) for the BAO scale only
for the radial direction as Az (model-independent)

@ zivin, Moss & scott08: It dOes not fit (Gpc Void) together with full
CMB (which they fit with very low h and
non-compensated Void)

@ Garcia-Belido & Haugboelle '08; it fitS as well as ACDM (Gpc Void),

Gosmologcal but only first peak location and SN Union (no full CMB).

observations
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CMB Dipole

Void vs Dark
Energy How much Observer can be off-center?

@ Observer at Distance dg

aT j
@ &= ~Vvp~do

@ CMB d|p0|e < 10_3 if do ~15-20 MpC (Tomitaetal.,AIneset

2l:06)

@ Higher multipoles go as higher powers of vg:
negligible©.

Other

cosmological

observations @ Bulk dipole of the same size of our dipole 600km/s
(Kashlinsky et al. '08: 600 — 1000km/s)

PAlnes et al. '06
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Void vs Dark
Energy

@ All objects inside the Void have some peculiar velocity

@ This gives rise to ‘%T ~ ¥ and spectrum distortions
(kinetic SZ effect)

@ Goodman '95: v/c < 0.01 (atz ~ 0.2)

other @ Caldwell-Stebbins '07-'08: rule out Voids with z, > 0.9

cosmological
observations
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@ Garcia-Belido & Haugboelle: USING 9 clusters (0.2 < z < 0.6) with
detection of spectral distortion one finds:
v = 320km/sec and o0 = 1600 km/sec (o expected is
only about 400 km/sec!)

@ Exclude L > 1.5Gpc, with Q) = 0.23.

Other

cosmological
observations



Void vs Dark
Energy

@ Garcia-Belido & Haugboelle: USING 9 clusters (0.2 < z < 0.6) with
detection of spectral distortion one finds:
v = 320km/sec and o0 = 1600 km/sec (o expected is
only about 400 km/sec!)

@ Exclude L > 1.5Gpc, with Q) = 0.23.

@ But Kashlinsky et al. measure high ¢ ~ 1000km/sec
on 300 Mpc/h (they assume kSZ, but do not see
e spectral distortions).

observations



Other ways to test the Copernican principle

Void vs Dark
Energy

@ Clarkson, Bassett and Lu '08: a consistency relation:
C(z) =0 for FLRW, at all z,

C(z) =1+ H*(DD” — D’?) + HH'DD’

@ Uzan, Clarkson and Ellis '08: Time drift of the redshift
(over 10 years)

Other
cosmological
observations
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@ Two papers claim significant anisotropy in H:

@ D.Schwarz & Weinhorst '07: in the SNIa dataset
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Anisotropy of H

Void vs Dark
Energy

@ Similarly the expansion is anisotropic if do nonzero!?.

@ Two papers claim significant anisotropy in H:
@ D.Schwarz & Weinhorst '07: in the SNla dataset
(> 95%C.L.)
@ McClure & Dyer '07: in the Hubble Key Project data
(9 — 20km/sec)

@ In addition this should be correlated with CMB dipole

Other

T el @ Also to be explored: non-sphericity of Void

observations

11Tomita (2000), Alnes et al. ('06)
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It is well-known that linear ® constant in Matter
Dominated Universe

If they evolve instead =-photon feels A® inside
structures = additional secondary CMB anisotropy

Correlation of CMB with LSS

Detected with some significance by several groups at
low-|

Consistent with Q5 ~ 0.7

Can we get this in our scenario?

@ Inside the Void

o If there is curvature

@ If there are other big Voids in the sky = nonlinear
evolution of ®

Effect of order (L/rhor )3 ~ O(107°)
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Assessment

Void vs Dark
Energy

A Void of at least L ~ 200 — 250 Mpc/h scale consistent
with WMAP and SNIla (Riess data), and local h

@ J quite large (~ 0.4)

Incompatible with the expected value (6 ~ 0.04).

@ But some observations seem to indicate such
structures (need for more observations)

@ Need for larger Void to fit Union data ( L = 500 Mpc/h)

@ More data will discriminate (especially SDSS-II for
Conclusions Supernovae)
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Assessment

Void vs Dark
Energy

@ Consistency with BAO problematic: Hp too low

@ Even Iarger Void? 0(1 GpC/h) (Garcia—BeIIido& Haugboelle ’08)

@ Checking with curved models (work in progress)

@ Non-compensated Voids? (monopole To = 2.73K gets
large correction) ziin-Moss-scott 08

Conclusions
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Energy

Observer has to sit near the center (10 — 20Mpc in
radial position)

@ But this may be further detected as anisotropic
expansion

@ And would be consistent with recent Large Bulk flow
measurements

@ Requires peculiar primordial spectrum: low tilt, large
running.

@ Analysis of LSS and Lyman-« forest to be included
@ ISW effect to be included

Conclusions @ Check if the higher Qn, /2y, is compatible with other data
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Short Conclusion

Void vs Dark
Energy

Backreaction:
@ Theoretically challenging
@ A quantitative realistic calculation still missing

Void:
@ Many observations to reconcile together
@ Before considering it as a valid alternative to ACDM

@ More work to be done (and more data will soon
discriminate)

Conclusions
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