

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Can an Inhomogeneous Universe mimic Dark Energy?

Alessio Notari ¹

CERN

Dec. 2008 / Workshop @ KEK

¹In collaboration with:

Rocky Kolb, Antonio Riotto, Sabino Matarrese, Tirthabir Biswas , Stephon Alexander, Deepak Vaid, Reza Mansouri

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

The need for Dark Energy

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.

The need for Dark Energy

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.
- We compute D_L (or D_A) and z

The need for Dark Energy

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.
- We compute D_L (or D_A) and z
- We use this to interpret several observations (SNIIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)

The need for Dark Energy

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.
- We compute D_L (or D_A) and z
- We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)
- To fit the observations we need a $p < 0$ term (“Dark Energy”).

The need for Dark Energy

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.
- We compute D_L (or D_A) and z
- We use this to interpret several observations (SNIIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)
- To fit the observations we need a $p < 0$ term (“Dark Energy”).
- **Problem:** We do not understand
 - the amount (why of the same amount as Matter today)?
 - its nature (is it vacuum energy?)

Two main pieces of evidence

- **SNIA** is incompatible with deceleration (independently on other observations)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIA Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

- **SN^{Ia}** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SN^{Ia} Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

- **SN^{Ia}** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SN^{Ia} Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

- **SN^{Ia}** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles
- **CMB**: best-fit with power-law (k^{n_s}) primordial spectrum has $\Omega_\Lambda \sim 0.7$.

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SN^{Ia} Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

- **SN^{Ia}** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles
- **CMB**: best-fit with power-law (k^{n_s}) primordial spectrum has $\Omega_\Lambda \sim 0.7$.
But good fit² also with $\Omega_\Lambda = 0$ (*flat*)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SN^{Ia} Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

- **SN_{Ia}** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles
- **CMB**: best-fit with power-law (k^{n_s}) primordial spectrum has $\Omega_\Lambda \sim 0.7$.
But good fit² also with $\Omega_\Lambda = 0$ (*flat*) : requirements
 - low- h (0.45)
 - non-standard primordial spectrum

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SN_{Ia} Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Two main pieces of evidence

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIA Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **SNIA** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles
- **CMB**: best-fit with power-law (k^{n_s}) primordial spectrum has $\Omega_\Lambda \sim 0.7$.
But good fit² also with $\Omega_\Lambda = 0$ (*flat*) : requirements
 - low- h (0.45)
 - non-standard primordial spectrum
- The two dataset,
 - **SNIA**
 - **CMB together with measured h** : $0.55 \lesssim h \lesssim 0.8$are strong evidence for $\Omega_\Lambda \sim 0.7$.

²Blanchard et al. '03, Sarkar and Hunt '04, '07

Two main pieces of evidence

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIA Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **SNIA** is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them *not exactly* as standard candles
- **CMB**: best-fit with power-law (k^{n_s}) primordial spectrum has $\Omega_\Lambda \sim 0.7$.
But good fit² also with $\Omega_\Lambda = 0$ (*flat*) : requirements
 - low- h (0.45)
 - non-standard primordial spectrum
- The two dataset,
 - **SNIA**
 - **CMB together with measured h** : $0.55 \lesssim h \lesssim 0.8$are strong evidence for $\Omega_\Lambda \sim 0.7$.
- Other observations (**BAO** and LSS...) fit consistently

²Blanchard et al. '03, Sarkar and Hunt '04, '07

Is there any alternative?

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Is there any alternative?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Look for some interesting critical point of view and other logical possibilities

Is there any alternative?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Look for some interesting critical point of view and other logical possibilities
- What happens to observations when we have departure from a *homogeneous* model?

Is there any alternative?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Look for some interesting critical point of view and other logical possibilities
- What happens to observations when we have departure from a *homogeneous* model?
- Can we accomodate for *all* this evidence if we relax (to some degree) homogeneity?

Homogenous Universe: a good approximation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.

Homogenous Universe: a good approximation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.
- It is a good approximation

Homogenous Universe: a good approximation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.
- It is a good approximation
- ..at late times $\delta \equiv \frac{\delta\rho}{\rho} > 1$ for all scales
 $L \lesssim \mathcal{O}(10)/h \text{ Mpc}$ (1% of Hubble radius)

Homogenous Universe: a good approximation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.
- It is a good approximation
- ..at late times $\delta \equiv \frac{\delta\rho}{\rho} > 1$ for all scales
 $L \lesssim \mathcal{O}(10)/h \text{Mpc}$ (1% of Hubble radius)
- Superclusters upto few hundreds of Mpc (10% of Hubble radius), nonlinear objects ("cosmic web")

SDSS data ("The cosmic web")

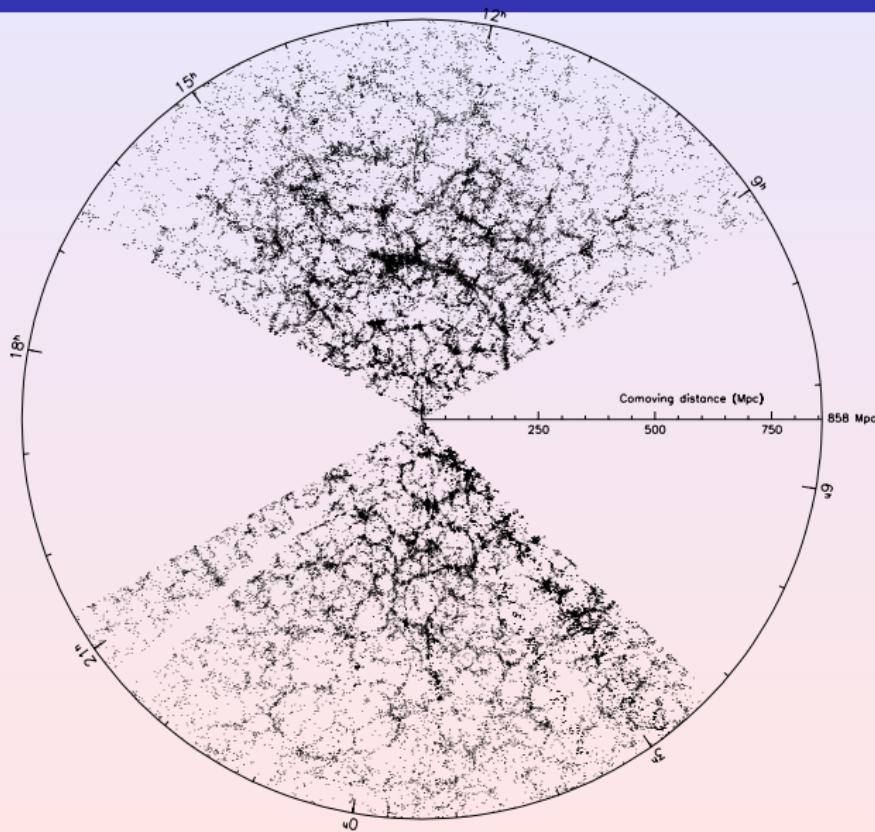
Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

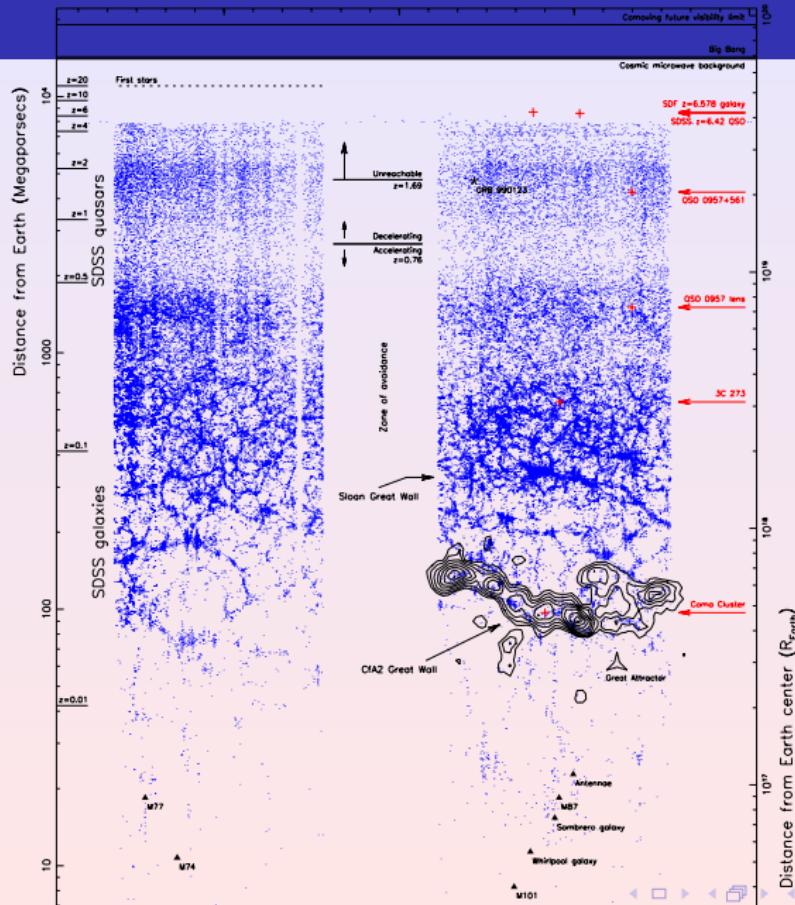

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions



SDSS data

Void vs Dark Energy

Motivations

Backreaction

SDSS data

Void vs Dark Energy

Motivations

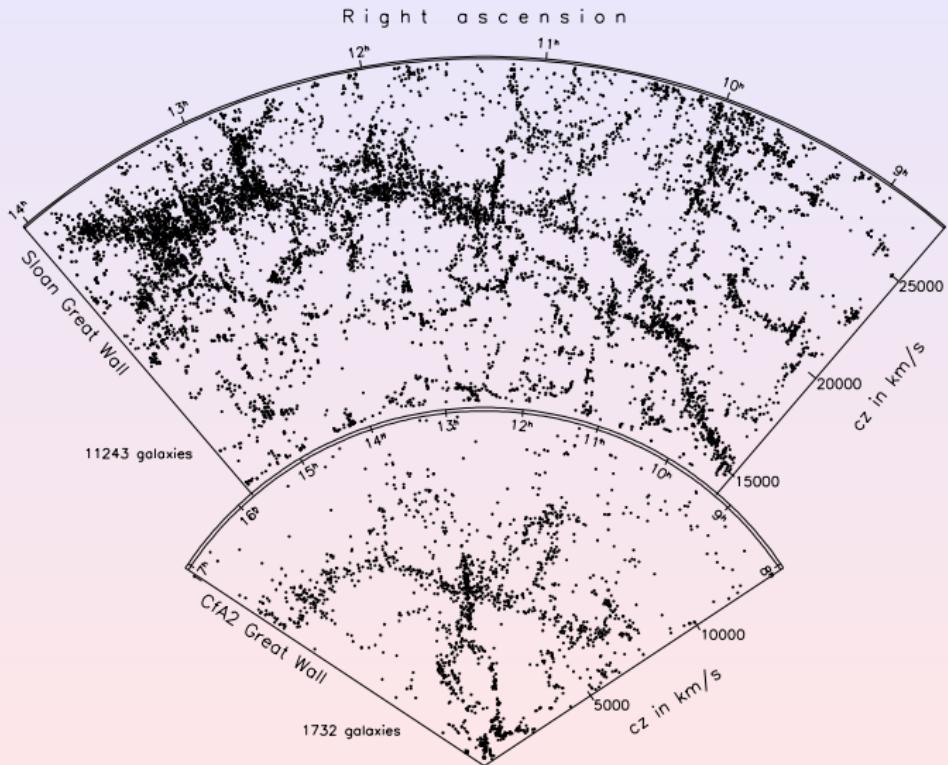
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data


SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

perturbations affect the background

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

perturbations affect the background

- Light propagation

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

perturbations affect the background

- Light propagation

Light meets voids and structures. Do they compensate?

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

perturbations affect the background

- Light propagation

Light meets voids and structures. Do they compensate?

- Large local fluctuation

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

In general:

- Backreaction

perturbations affect the background

- Light propagation

Light meets voids and structures. Do they compensate?

- Large local fluctuation

What if we live in a local void?

A few words on backreaction

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Averaging of Einstein's Equations

Nonlinearity \Rightarrow extra terms in Friedmann equations³

³G.Ellis-W.Stoeger '67, Futamase, Sakai et al, Buchert '95, S. Rasanen '03 ,

E.Kolb-S.Matarrese-A.Riotto-A. N. '04 , A. N. '06

A few words on backreaction

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Averaging of Einstein's Equations
Nonlinearity \Rightarrow extra terms in Friedmann equations³
- Consider a comoving **inhomogeneous** metric ($p=0$)

$$ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, \mathbf{x})$$

³G.Ellis-W.Stoeger '67, Futamase, Sakai et al, Buchert '95, S. Rasanen '03 ,

E.Kolb-S.Matarrese-A.Riotto-A. N. '04 , A. N. '06

A few words on backreaction

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Averaging of Einstein's Equations
Nonlinearity \Rightarrow extra terms in Friedmann equations³
- Consider a comoving **inhomogeneous** metric ($p=0$)

$$ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, \mathbf{x})$$

- For a comoving domain D :

$$V_D = \int_D \sqrt{h} d^3x, \quad a_D(t) \equiv \left(\frac{V_D}{V_{D_0}} \right)^{1/3};$$

³G.Ellis-W.Stoeger '67, Futamase, Sakai et al, Buchert '95, S. Rasanen '03 ,

E.Kolb-S.Matarrese-A.Riotto-A. N. '04 , A. N. '06

A few words on backreaction

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Averaging of Einstein's Equations
Nonlinearity \Rightarrow extra terms in Friedmann equations³
- Consider a comoving **inhomogeneous** metric ($p=0$)

$$ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, \mathbf{x})$$

- For a comoving domain D :

$$V_D = \int_D \sqrt{h} d^3x, \quad a_D(t) \equiv \left(\frac{V_D}{V_{D_0}} \right)^{1/3};$$

$$\frac{\ddot{a}_D}{a_D} = -\frac{4\pi G}{3} (\rho_{\text{eff}} + 3P_{\text{eff}}),$$

$$\left(\frac{\dot{a}_D}{a_D} \right)^2 = \frac{8\pi G}{3} \rho_{\text{eff}},$$

³G.Ellis-W.Stoeger '67, Futamase, Sakai et al, Buchert '95, S. Rasanen '03 ,

The extra terms

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

• Where

$$\begin{aligned}\rho_{\text{eff}} &= \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \\ P_{\text{eff}} &= -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G},\end{aligned}$$

The extra terms

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- Where

$$\begin{aligned}\rho_{\text{eff}} &= \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \\ P_{\text{eff}} &= -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G},\end{aligned}$$

- The *real* question: **how large is it?**

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10 - 50) \text{Mpc}/h$

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10 - 50) \text{Mpc}/h$

$$\frac{\overline{H_D - H}}{H} \simeq 10^{-5}$$

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10 - 50) \text{Mpc}/h$

$$\frac{\overline{H_D - H}}{H} \simeq 10^{-5}$$

- Small,

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10 - 50) \text{Mpc}/h$

$$\frac{\overline{H_D - H}}{H} \simeq 10^{-5}$$

- Small, but not $10^{-10}!$

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04

Perturbatively: 2nd order

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNII Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- On a large Domain the dominant term has the form⁴ :

$$\frac{\overline{H_D - H}}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \overline{\langle \varphi \nabla^2 \varphi \rangle}$$
$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10 - 50) \text{Mpc}/h$

$$\frac{\overline{H_D - H}}{H} \simeq 10^{-5}$$

- Small, but not 10^{-10} ! Enhanced by $\left(\frac{k_{EQ}}{H_0} \right)^2$

⁴

L. Hui-U. Seljak '95, S. Rasanen '03, E. W. Kolb-S. Matarrese-A.N.-A. Riotto '04

Power counting

- What about higher (n^{th}) orders ⁵?

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Power counting

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- What about higher (n^{th}) orders ⁵?
- They go as

$$\overline{\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle}$$

Power counting

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What about higher (n^{th}) orders ⁵?
- They go as

$$\overline{\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle}$$

- We can write the n^{th} order as

$$10^{-5} \epsilon^{n-1}$$

Power counting

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- What about higher (n^{th}) orders ⁵?
- They go as

$$\overline{\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle}$$

- We can write the n^{th} order as

$$10^{-5} \epsilon^{n-1}$$

where roughly

$$\epsilon \equiv \frac{A}{1+z} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \times \text{Int}$$

with

$$\text{Int} = \int dq T^2(q) \approx 0.02$$

Higher orders

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $\epsilon = \mathcal{O}(1)$ today

Higher orders

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!

Higher orders

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!
- Do they **sum** up to 10^{-5} or more??

Higher orders

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!
- Do they **sum** up to 10^{-5} or more??
- Need non-perturbative treatment

Higher orders

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!
- Do they **sum** up to 10^{-5} or more??
- Need non-perturbative treatment
- Note: $\epsilon \ll 1$ at high z

Void vs Dark Energy

Motivations

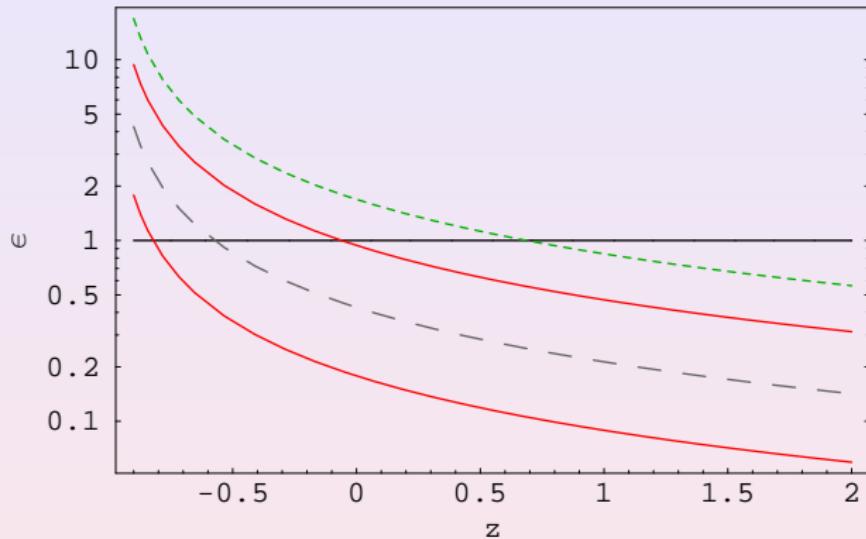
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data


SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Figure: Grey dashed line: central value,
Red solid lines: 2σ ranges
(We used the growth factor as in matter domination. For comparison, green dotted line: $\Omega_M = 1$).

Void vs Dark Energy

Motivations

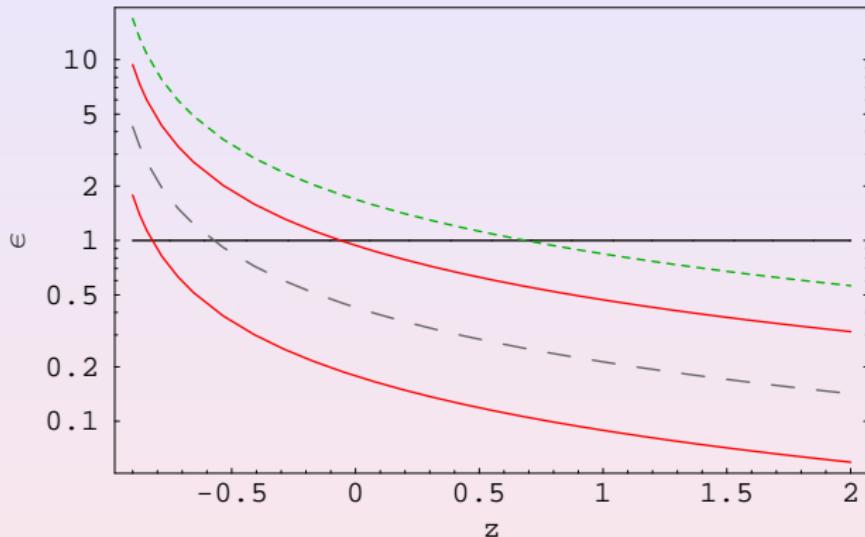
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data


SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Figure: Grey dashed line: central value,
Red solid lines: 2σ ranges
(We used the growth factor as in matter domination. For comparison, green dotted line: $\Omega_M = 1$).

Void vs Dark Energy

Motivations

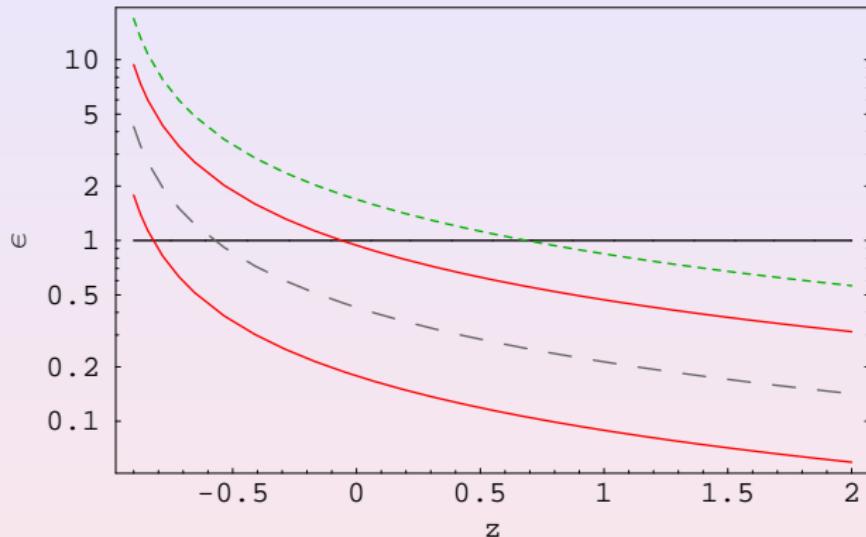
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data


SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Figure: Grey dashed line: central value,
Red solid lines: 2σ ranges
(We used the growth factor as in matter domination. For comparison, green dotted line: $\Omega_M = 1$).

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$: corrections to photon trajectories

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
- All information from expansion comes from plots $D - z$

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
- All information from expansion comes from plots $D - z$
- Cannot disentangle this from backreaction

Photons in inhomogeneous metric

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
- All information from expansion comes from plots $D - z$
- Cannot disentangle this from backreaction
- Compute $\frac{\Delta z}{1+z}$ and $\frac{\Delta D}{D}$ in the presence of structures

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is

LTB exact solutions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric
- We consider two configurations:

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric
- We consider two configurations:
 - LTB spheres embedded in FLRW ("Swiss-Cheese")

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric
- We consider two configurations:
 - LTB spheres embedded in FLRW ("Swiss-Cheese")
 - LTB with shells of periodically varying density ("Onion")

LTB exact solutions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric
- We consider two configurations:
 - LTB spheres embedded in FLRW ("Swiss-Cheese")
 - LTB with shells of periodically varying density ("Onion")
- We study null geodesic in this metric

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing : $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3$

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing : $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2$

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing : $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2$
- Still small (for late acceleration)

⁶T. Biswas-A. N. '06-'07

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect from one hole⁶ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing : $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2$
- Still small (for late acceleration)
- Interesting in the CMB, as a Rees-Sciama effect.

⁶T. Biswas-A. N. '06-'07

Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^7$

⁷ Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁸ S. Weinberg '76, Brouzakis et al. '06-'07

Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^7$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$

⁷ Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁸ S. Weinberg '76, Brouzakis et al. '06-'07

Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^7$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing: $N_{\text{holes}} \mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H)$

⁷ Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁸ S. Weinberg '76, Brouzakis et al. '06-'07

Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^7$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing: $N_{\text{holes}} \mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H)$
- Not so small...

⁷ Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁸ S. Weinberg '76, Brouzakis et al. '06-'07

Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)$ ⁷
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing: $N_{\text{holes}} \mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H)$
- Not so small...
- But it should have zero angular average (unlike z)⁸

⁷ Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁸ S. Weinberg '76, Brouzakis et al. '06-'07

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes
(Bolejko '08)

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes
(Bolejko '08) *Effects of similar size*

Beyond LTB?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes
(Bolejko '08) *Effects of similar size*
- But still special: the cheese feels *no backreaction* of the holes

A local fluctuation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

⁹Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

A local fluctuation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Suppose that we live in a peculiar local region

⁹Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

A local fluctuation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Suppose that we live in a peculiar local region
- \Rightarrow low z observations may be very different from average.

⁹Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

A local fluctuation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Suppose that we live in a peculiar local region
- \Rightarrow low z observations may be very different from average.
- One realizes that acceleration is inferred **comparing low z with high z ...**

⁹Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

A local fluctuation?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Suppose that we live in a peculiar local region
- \Rightarrow low z observations may be very different from average.
- One realizes that acceleration is inferred **comparing low z with high z ...**
- Can this mimic acceleration ⁹?

⁹Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

Earlier literature

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Mustapha, Hellaby, Ellis '97: show that LTB can reproduce any observations

Earlier literature

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Mustapha, Hellaby, Ellis '97: show that LTB can reproduce any observations
- Celerier '99: showed that LTB can mimic Λ CDM

Earlier literature

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Mustapha, Hellaby, Ellis '97: show that LTB can reproduce any observations
- Celerier '99: showed that LTB can mimic Λ CDM
- Tomita '01: Compensated Void 200 – 300 Mpc/ h scale

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)
- Assumption: we live near the center

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)
- Assumption: we live near the center
- A void expands faster than the “external” FLRW

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)
- Assumption: we live near the center
- A void expands faster than the “external” FLRW
- So, nearby objects inside the void redshift more

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)
- Assumption: we live near the center
- A void expands faster than the “external” FLRW
- So, nearby objects inside the void redshift more
- This can mimic acceleration (as we will see...)

Qualitatively

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consider a “compensated Void” : a spherical Void plus an external shell of matter
(on average same density as “external” FLRW)
- Assumption: we live near the center
- A void expands faster than the “external” FLRW
- So, nearby objects inside the void redshift more
- This can mimic acceleration (as we will see...)
- How much contrast δ and how large L is needed?

About Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Before going to the quantitative analysis...

About Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Before going to the quantitative analysis...
- Let's review some literature and observations on Voids

Other uses of Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Inoue and Silk '06: some features of the low multipole **anomalies** in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc}/h$, $\delta \sim -0.3$)

Other uses of Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Inoue and Silk '06: some features of the low multipole **anomalies** in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc}/h$, $\delta \sim -0.3$)
- The CMB has a **Cold Spot** (M. Cruz et al. ('06 and '07)): it could be explained by another similar Big Void (Inoue and Silk '06)

Other uses of Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Inoue and Silk '06: some features of the low multipole **anomalies** in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc}/h$, $\delta \sim -0.3$)
- The CMB has a **Cold Spot** (M. Cruz et al. ('06 and '07)): it could be explained by another similar Big Void (Inoue and Silk '06)
- The Cold Spot in the CMB claimed to be correlated with an underdense region in the LSS (Rudnick, Brown and Williams '07, but see Huterer and ...)

Other uses of Voids

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Inoue and Silk '06: some features of the low multipole **anomalies** in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc}/h$, $\delta \sim -0.3$)
- The CMB has a **Cold Spot** (M. Cruz et al. ('06 and '07)): it could be explained by another similar Big Void (Inoue and Silk '06)
- The Cold Spot in the CMB claimed to be correlated with an underdense region in the LSS (Rudnick, Brown and Williams '07, but see Huterer and ...)
- It could be detected via **lensing** (S. Das and D. Spergel '08) and via **non-gaussian coupling Rees-Sciama effect - lensing** (I. Masina and A.N., in preparation)

Observational Status

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Some observational evidence for a local large underdense region ($\sim 25\%$ less dense, $r \sim 200 \text{ Mpc}/h$) from number counts of galaxies (2MASS)
(Frith et al. Mon. Not. Roy. Astron. Soc. **345**, 1049 (2003))
- It would represent a 4σ fluctuation, at odds with Λ CDM.

Observational Status

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Some observational evidence for a local large underdense region ($\sim 25\%$ less dense, $r \sim 200 \text{ Mpc}/h$) from number counts of galaxies (2MASS)
(Frith et al. Mon. Not. Roy. Astron. Soc. **345**, 1049 (2003))
- It would represent a 4σ fluctuation, at odds with Λ CDM.
- Many Large Voids identified via **ISW** effect in the SDSS LRG catalog (about $100 \text{ Mpc}/h$ radius) (Granett et al. '08)
- Also in contradiction with Λ CDM: $P < 10^{-8}$ (Sarkar & Hunt '08)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the
data

SNIa Hubble diagram
WMAP
Putting things
together

Other
cosmological
observations

Conclusions

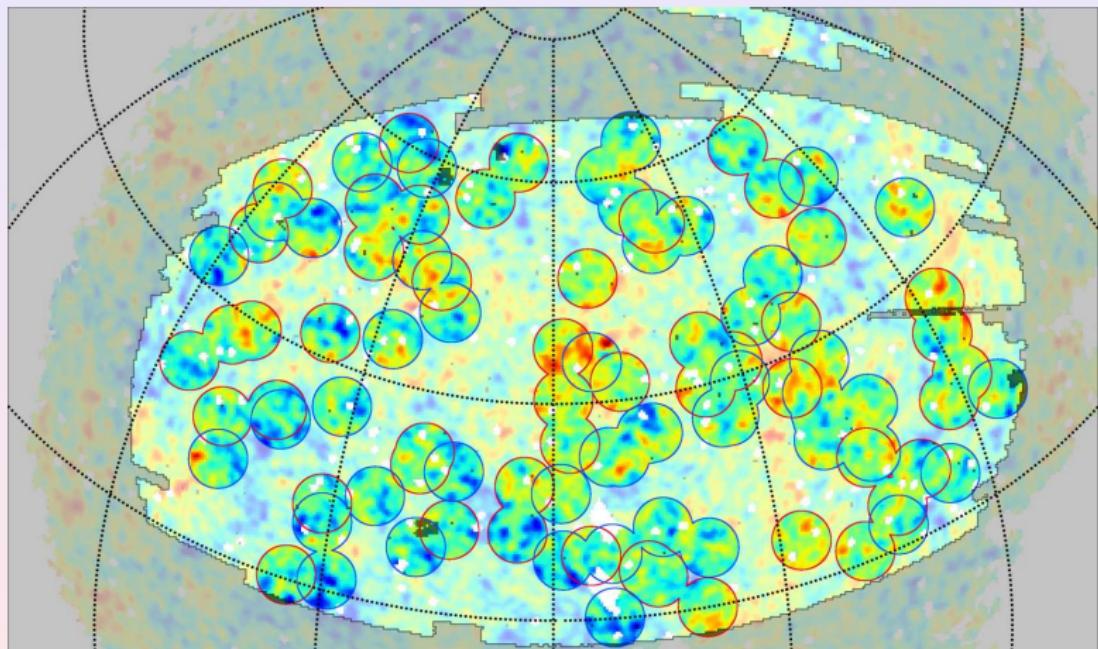


Figure: Granett, Neyrinck & Szapudi '08

Large bulk motion?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Recent measurement (Kashlinsky et al.'08): **very large coherent motion** on $300\text{Mpc}/h$ scale, inconsistent with ΛCDM
- Could be due to very large scale inhomogeneous matter distribution

Large bulk motion?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Recent measurement (Kashlinsky et al.'08): **very large coherent motion** on $300\text{Mpc}/h$ scale, inconsistent with ΛCDM
- Could be due to very large scale inhomogeneous matter distribution
- Watkins, Feldman & Hudson '08: use peculiar velocities of various (4500) objects in a $100\text{Mpc}/h$ radius.
Find 400km/sec (expected 100km/sec)

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum
- Can we ever get huge Voids?

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum
- Can we ever get huge Voids?
 - Percolation of Voids?

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum
- Can we ever get huge Voids?
 - Percolation of Voids?
 - Non-standard structure formation?

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum
- Can we ever get huge Voids?
 - Percolation of Voids?
 - Non-standard structure formation?
 - Non-gaussianity?

A “Minimal” Void ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- What is the size we need to mimick DE?
- It will turn out that a Minimal Void needs at least the same size (*for Riess '07 SNIa and WMAP*)
- $r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h$ and $\delta \sim -0.4$
- **Problem (I):** on this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum
- Can we ever get huge Voids?
 - Percolation of Voids?
 - Non-standard structure formation?
 - Non-gaussianity?
 - Nucleation of primordial Bubbles

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations
- For **UNION** (...) data **$500\text{Mpc}/h$** required

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations
- For **UNION** (...) data **$500\text{Mpc}/h$** required and the fit is not very good: $\chi^2 = 343$ (306 d.o.f.)

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations
- For **UNION** (...) data **$500\text{Mpc}/h$** required and the fit is not very good: $\chi^2 = 343$ (306 d.o.f.)
- A very good fit obtained with **(2 Gpc)** (Garcia-Bellido & Haugboelle)

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations
- For **UNION** (...) data **$500\text{Mpc}/h$** required and the fit is not very good: $\chi^2 = 343$ (306 d.o.f.)
- A very good fit obtained with **(2 Gpc)** (**Garcia-Bellido & Haugboelle**)
- Or adding open curvature

Need for a Larger Void

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- **Problem (II):** even larger size seems necessary for other observations
- For **UNION** (...) data **$500\text{Mpc}/h$** required and the fit is not very good: $\chi^2 = 343$ (306 d.o.f.)
- A very good fit obtained with **(2 Gpc)** (Garcia-Bellido & Haugboelle)
- Or adding open curvature
- Need for a Large Void also for **BAO**: a better fit is obtained with at least (1 Gpc) (Garcia-Bellido & Haugboelle).

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- **Building the model**
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

Lemaître-Tolman-Bondi metrics

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

$$ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2\theta d\varphi^2)$$

with comoving coordinates (r, θ, φ) and proper time t .

Lemaître-Tolman-Bondi metrics

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

$$ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2\theta d\varphi^2)$$

with comoving coordinates (r, θ, φ) and proper time t .

- Spherically symmetric.

Lemaître-Tolman-Bondi metrics

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

$$ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2\theta d\varphi^2)$$

with comoving coordinates (r, θ, φ) and proper time t .

- Spherically symmetric.
- Einstein equations:

$$\frac{1}{2} \frac{\dot{R}^2(r, t)}{R^2(r, t)} - \frac{GM(r)}{R^3(r, t)} = \frac{r^2k(r)}{R^2(r, t)},$$
$$4\pi\rho(r, t) = \frac{M'(r)}{R'(r, t)R^2(r, t)},$$

LTB metrics

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

$$ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2 \theta d\varphi^2)$$

LTB metrics

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

$$ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2\theta d\varphi^2)$$

It has the solutions:

- For $k(r) > 0$ ($k(r) < 0$),

$$R = \frac{GM(r)}{2r^2|k(r)|}[\cos h(u) - 1], \quad (4.1)$$

$$t - t_b(r) = \frac{GM(r)}{[2r^2|k(r)|]^{3/2}}[\sin h(u) - u].$$

- $k(r) = 0$,

$$R(r, t) = \left[\frac{9GM(r)}{2} \right]^{1/3} [t - t_b(r)]^{\frac{2}{3}}.$$

Choosing the functions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $t_b(r) = 0$ for our purposes, and “Gauge” choice:
 $M(r) \propto r^3$

Choosing the functions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $t_b(r) = 0$ for our purposes, and “Gauge” choice:
 $M(r) \propto r^3$
- $k(r)$ contains all the physical information about the profile.

Choosing the functions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $t_b(r) = 0$ for our purposes, and “Gauge” choice:
 $M(r) \propto r^3$
- $k(r)$ contains all the physical information about the profile.
- $k = 0$ flat FLRW, $k = \pm 1$ open/closed FLRW.

Choosing the functions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $t_b(r) = 0$ for our purposes, and “Gauge” choice:
 $M(r) \propto r^3$
- $k(r)$ contains all the physical information about the profile.
- $k = 0$ flat FLRW, $k = \pm 1$ open/closed FLRW.
- The idea is to describe structure formation
(start with $\delta(r, t_l) \ll 1$ and end up with $\delta(r, t_{\text{now}}) \gg 1$)

Choosing the functions

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- $t_b(r) = 0$ for our purposes, and “Gauge” choice:
 $M(r) \propto r^3$
- $k(r)$ contains all the physical information about the profile.
- $k = 0$ flat FLRW, $k = \pm 1$ open/closed FLRW.
- The idea is to describe structure formation
(start with $\delta(r, t_l) \ll 1$ and end up with $\delta(r, t_{\text{now}}) \gg 1$)
- We play with $k(r)$ to describe $\delta(r, t_l)$.

LTB merged to FLRW

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Matching of an LTB sphere (of radius L) to FLRW:

$$k'(0) = k'(L) = 0 ,$$

$$k(L) = \frac{4\pi}{3}\Omega_k, \quad \text{for } |\Omega_k| \ll 1 ,$$

LTB merged to FLRW

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Matching of an LTB sphere (of radius L) to FLRW:

$$k'(0) = k'(L) = 0 ,$$

$$k(L) = \frac{4\pi}{3}\Omega_k, \quad \text{for } |\Omega_k| \ll 1 ,$$

We use:

$$k(r) = k_{max} \left[\left(\frac{r}{L} \right)^4 - 1 \right]^2 \quad (\text{for } r < L)$$

$$k(r) = 0 \text{ (flat)} \quad (\text{for } r > L)$$

LTB merged to FLRW

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Matching of an LTB sphere (of radius L) to FLRW:

$$k'(0) = k'(L) = 0,$$

$$k(L) = \frac{4\pi}{3}\Omega_k, \quad \text{for } |\Omega_k| \ll 1,$$

We use:

$$k(r) = k_{\max} \left[\left(\frac{r}{L} \right)^4 - 1 \right]^2 \quad (\text{for } r < L)$$

$$k(r) = 0 \text{ (flat)} \quad (\text{for } r > L)$$

- Two parameters, L and k_{\max} .

The density

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Roughly:

$$\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)},$$

$$\text{where } \langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2}, \quad \text{and } \epsilon(r) \equiv 3k(r) + rk'(r).$$

The density

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Roughly:

$$\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)},$$

$$\text{where } \langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2}, \quad \text{and } \epsilon(r) \equiv 3k(r) + rk'(r).$$

- $\epsilon \ll 1$ linear growth

The density

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Roughly:

$$\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)},$$

$$\text{where } \langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2}, \quad \text{and } \epsilon(r) \equiv 3k(r) + rk'(r).$$

- $\epsilon \ll 1$ linear growth $\propto a(t) \propto t^{2/3}$

The density

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Roughly:

$$\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)},$$

$$\text{where } \langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2}, \quad \text{and } \epsilon(r) \equiv 3k(r) + rk'(r).$$

- $\epsilon \ll 1$ linear growth $\propto a(t) \propto t^{2/3}$
- ϵ not small: δ grows rapidly (as in Zel'dovich approx)

The density

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Roughly:

$$\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)},$$

$$\text{where } \langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2}, \quad \text{and } \epsilon(r) \equiv 3k(r) + rk'(r).$$

- $\epsilon \ll 1$ linear growth $\propto a(t) \propto t^{2/3}$
- ϵ not small: δ grows rapidly (as in Zel'dovich approx)
- We work at most with $\delta \sim \mathcal{O}(1)$.

The density profile

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

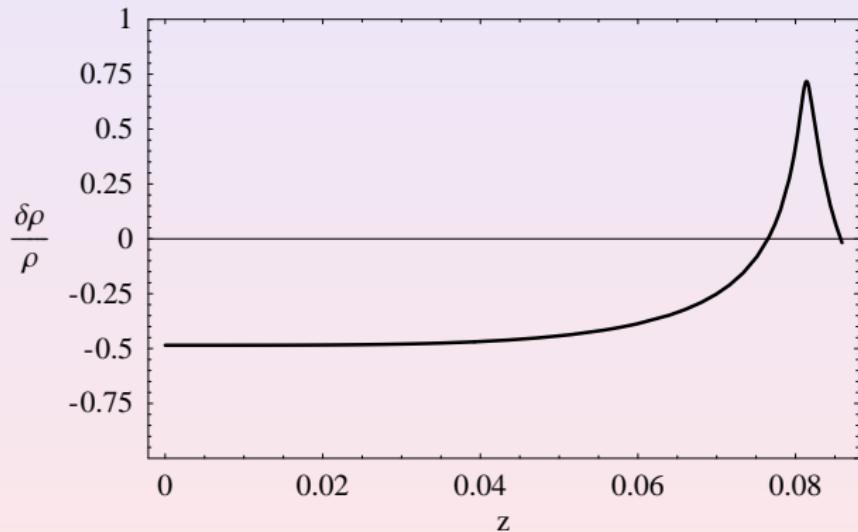
Local Void

Minimal Void

Building the model

Light propagation

Fitting the data


SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- **Light propagation**

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Solve for $t(r)$ along a $ds^2 = 0$ trajectory

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Solve for $t(r)$ along a $ds^2 = 0$ trajectory
- Then solve for

$$\frac{dz}{dr} = \frac{(1 + z(r))\dot{R}'(r, t(r))}{\sqrt{1 + 2r^2 k(r)}}.$$

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Solve for $t(r)$ along a $ds^2 = 0$ trajectory

- Then solve for

$$\frac{dz}{dr} = \frac{(1 + z(r))\dot{R}'(r, t(r))}{\sqrt{1 + 2r^2 k(r)}}.$$

- The result $z(r)$ can be found numerically

Redshift

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the
data

SNIa Hubble diagram

WMAP

Putting things
together

Other
cosmological
observations

Conclusions

- Solve for $t(r)$ along a $ds^2 = 0$ trajectory
- Then solve for

$$\frac{dz}{dr} = \frac{(1 + z(r))\dot{R}'(r, t(r))}{\sqrt{1 + 2r^2 k(r)}}.$$

- The result $z(r)$ can be found numerically
- We also have some very good analytical approximations

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Always in GR, luminosity distance and angular distance:

$$D_L = D_A(1 + z)^2.$$

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Always in GR, luminosity distance and angular distance:

$$D_L = D_A(1 + z)^2.$$

-

$$D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\bar{\theta}_O d\bar{\phi}_O}$$

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Always in GR, luminosity distance and angular distance:

$$D_L = D_A(1 + z)^2.$$

-

$$D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\bar{\theta}_O d\bar{\phi}_O} = \frac{d\theta_S d\phi_S}{d\bar{\theta}_O d\bar{\phi}_O} R^2|_S,$$

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the
data

SNIIa Hubble diagram
WMAP
Putting things together

Other
cosmological
observations

Conclusions

- Always in GR, luminosity distance and angular distance:

$$D_L = D_A(1 + z)^2.$$

-

$$D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\bar{\theta}_O d\bar{\phi}_O} = \frac{d\theta_S d\phi_S}{d\bar{\theta}_O d\bar{\phi}_O} R^2|_S,$$

- If observer in the center:

$$D_A^2 = R^2|_S.$$

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIA Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Always in GR, luminosity distance and angular distance:

$$D_L = D_A(1+z)^2.$$

-

$$D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\bar{\theta}_O d\bar{\phi}_O} = \frac{d\theta_S d\phi_S}{d\bar{\theta}_O d\bar{\phi}_O} R^2|_S,$$

- If observer in the center:

$$D_A^2 = R^2|_S.$$

- For generic observer (but radial trajectory):

$$D_A = R_S \left(R_O \int_{r_O}^{r_S} \frac{R'(r, t(r))}{(1+2E(r))(1+z(r))R(r, t(r))^2} dr \right),$$

Analytical approximation

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIA Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

$$f \equiv \frac{\sqrt[3]{2}(\cosh(u) - 1)}{3^{2/3}(\sinh(u) - u)^{2/3}} - 1 \quad (4.2)$$

$$u_0 = 6^{1/3}(\sinh(u) - u)^{1/3}. \quad (4.3)$$

Then, one can use this function in the following equations:

$$\tau(r) = \tau_0 - \frac{\pi}{9}\gamma^2 \bar{M}r[1 + f(\gamma^2 \tau_0^2 k(r))], \quad (4.4)$$

$$1 + z(r) = \left(\frac{\tau_0}{\tau(r)}\right)^2 \exp\left[\frac{4\pi\gamma^2 \bar{M}r}{9}f(\gamma^2 \tau_0^2 k(r))\right] \quad (4.5)$$

$$D_L(r) = \frac{\pi}{3}\gamma^2 r \tau(r)^2 [1 + f(\gamma^2 \tau_0^2 k(r))] [1 + z(r)]^2 \quad (4.6)$$

$$\tau_0 = \left(\frac{2\bar{M}}{3H_0}\right)^{1/3} \quad (4.7)$$

$$\gamma = \left(\frac{9\sqrt{2}}{\pi}\right)^{1/3} \quad (4.8)$$

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- **SNIa Hubble diagram**
- WMAP
- Putting things together

6 Other cosmological observations

High and low z

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \lesssim z \lesssim 0.08$)
 - high- z SN (roughly $0.4 \lesssim z \lesssim 1$)

High and low z

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \lesssim z \lesssim 0.08$)
 - high- z SN (roughly $0.4 \lesssim z \lesssim 1$)
- We choose large r_{Void} (at $z \approx 0.08 - 0.09$)

High and low z

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \lesssim z \lesssim 0.08$)
 - high- z SN (roughly $0.4 \lesssim z \lesssim 1$)
- We choose large r_{Void} (at $z \approx 0.08 - 0.09$)
- \Rightarrow The Local Bubble is different from the average.

Outside just matter dominated (even if there are other Bubbles, their effect is small)

Roughly

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At high z ($z \gtrsim 0.1$), just matter dominated Universe:

$$D_{\text{EdS}}(z) \approx \frac{2}{H_{\text{out}}}(1 + z - \sqrt{1 + z}).$$

Roughly

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At high z ($z \gtrsim 0.1$), just matter dominated Universe:

$$D_{\text{EdS}}(z) \approx \frac{2}{H_{\text{out}}}(1 + z - \sqrt{1 + z}).$$

- At low z "open-like" Universe with a different H

Roughly

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At high z ($z \gtrsim 0.1$), just matter dominated Universe:

$$D_{\text{EdS}}(z) \approx \frac{2}{H_{\text{out}}}(1 + z - \sqrt{1 + z}).$$

- At low z "open-like" Universe with a different H
- Two (reduced) Hubble parameters: h and h_{out}

Roughly

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At high z ($z \gtrsim 0.1$), just matter dominated Universe:

$$D_{\text{EdS}}(z) \approx \frac{2}{H_{\text{out}}}(1 + z - \sqrt{1 + z}).$$

- At low z "open-like" Universe with a different H
- Two (reduced) Hubble parameters: h and h_{out}
- Rapid transition near the shell-like structure

Roughly

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- At high z ($z \gtrsim 0.1$), just matter dominated Universe:

$$D_{\text{EdS}}(z) \approx \frac{2}{H_{\text{out}}}(1 + z - \sqrt{1 + z}).$$

- At low z "open-like" Universe with a different H
- Two (reduced) Hubble parameters: h and h_{out}
- Rapid transition near the shell-like structure
- h corresponds to what is measured

Δm for different models

Void vs Dark Energy

Motivations

Backreaction

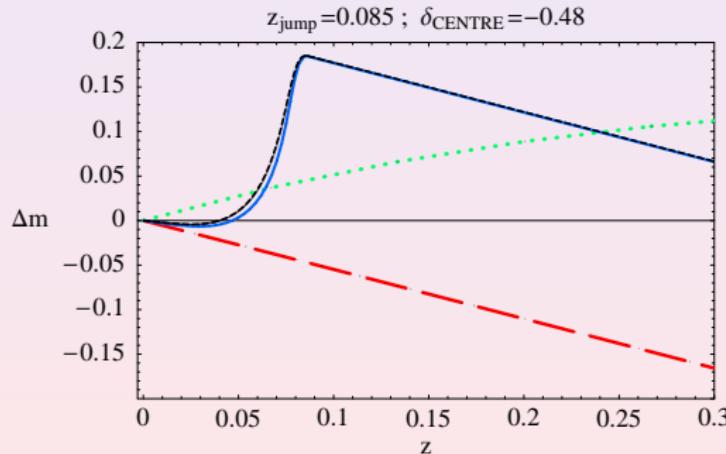
Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram


WMAP

Putting things together

Other cosmological observations

Conclusions

- Magnitude is $m \equiv 5 \log_{10} D(z)$
- The open “empty” Universe is subtracted ($\Omega_K = -1$)

$m - z$ diagram: Riess data

Void vs Dark Energy

Motivations

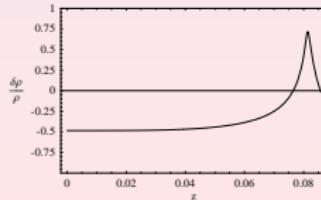
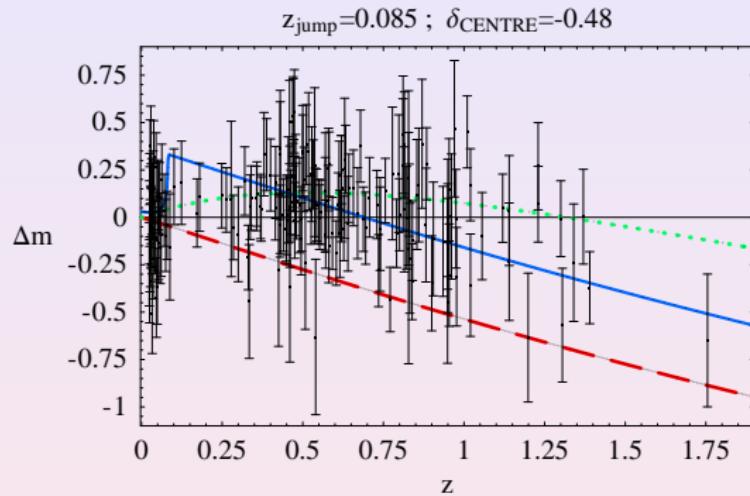
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data



SNIA Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Finding the best fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- We fix several values of L

Finding the best fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- We fix several values of L
- What matters is just the Jump: $\mathcal{J} \equiv \frac{h}{h_{OUT}}$

Finding the best fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- We fix several values of L
- What matters is just the Jump: $\mathcal{J} \equiv \frac{h}{h_{OUT}}$
- This is also related to the central density contrast:
$$\mathcal{J} = 2 - (1 - \delta_0)^{1/3}$$

Finding the best fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- We fix several values of L
- What matters is just the Jump: $\mathcal{J} \equiv \frac{h}{h_{OUT}}$
- This is also related to the central density contrast:
$$\mathcal{J} = 2 - (1 - \delta_0)^{1/3}$$
- We vary \mathcal{J} and compute the χ^2 .

Fitting SNIa with a Jump

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Riess et al. dataset, astro-ph/0611576 (182 SNIa)

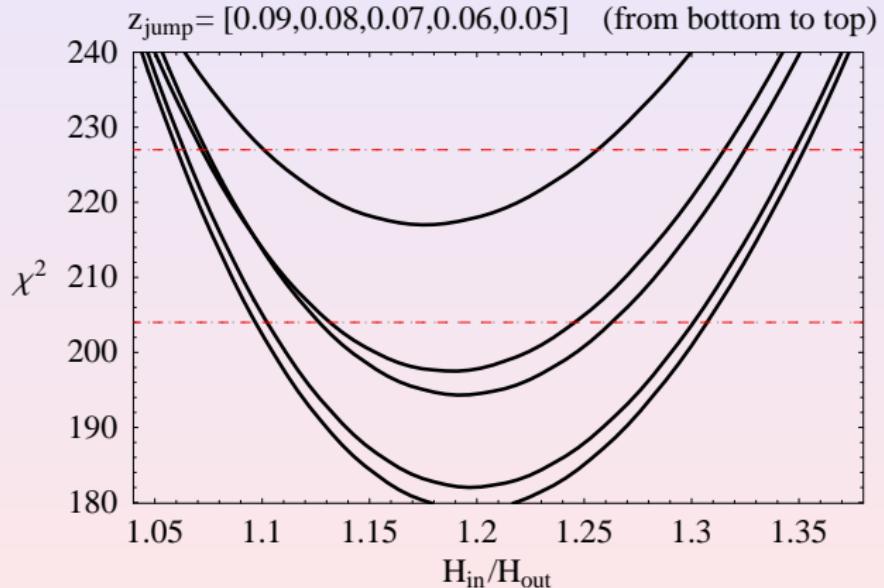


Figure: The red dashed lines are 10% and 1% goodness-of-fit (182 data points)

LTB Void fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

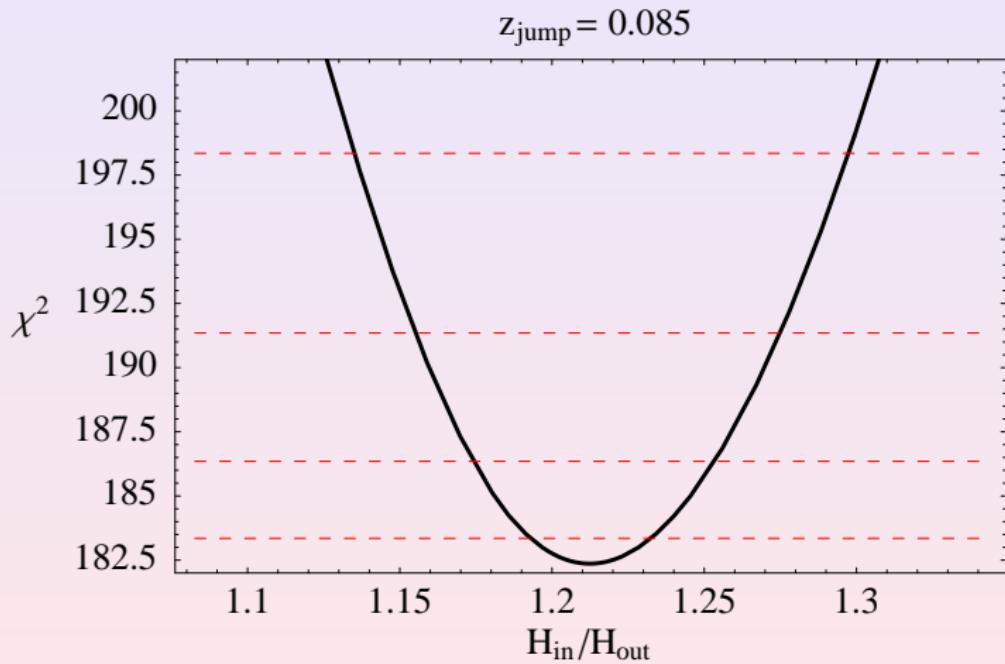


Figure: Here we use the full LTB model. We show 1σ , 2σ , 3σ and 4σ intervals (using likelihood $\propto e^{-\chi^2/2}$).

χ^2 : Riess data

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Table: Comparison with data (full data set of Riess et al.)

Model	χ^2 (181 d.o.f.)
Λ CDM (with $\Omega_M = 0.27, \Omega_\Lambda = 0.73$)	160
EdS (with $\Omega_M = 1, \Omega_\Lambda = 0$)	274
Void ($\sqrt{\langle \delta^2 \rangle} \approx 0.4$ on $L = 250/h\text{Mpc}$)	182

Remarks:

- With instrumental error only: no smooth curve can give a good fit
- Estimated error from intrinsic variability added in quadrature

χ^2 : Riess data

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Table: Comparison with data (full data set of Riess et al.)

Model	χ^2 (181 d.o.f.)
Λ CDM (with $\Omega_M = 0.27, \Omega_\Lambda = 0.73$)	160
EdS (with $\Omega_M = 1, \Omega_\Lambda = 0$)	274
Void ($\sqrt{\langle \delta^2 \rangle} \approx 0.4$ on $L = 250/h\text{Mpc}$)	182

Remarks:

- With instrumental error only: no smooth curve can give a good fit
- Estimated error from intrinsic variability added in quadrature
- Not as good as Λ CDM
- Becomes better including curvature Ω_k outside

χ^2 : UNION data

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Table: Comparison with data (Union data)

Model	χ^2 (307 d.o.f.)
Λ CDM (with $\Omega_M = 0.27, \Omega_\Lambda = 0.73$)	304
Void ($\sqrt{\langle \delta^2 \rangle} \approx 0.4$ on $L = 500/h\text{Mpc}$)	340
Void ($\sqrt{\langle \delta^2 \rangle} \approx 0.7$ on $L = 2000/h\text{Mpc}$)	304

Remarks:

- It seems necessary to consider a larger Void (Gpc scale)
- Or add curvature? (work in progress)

UNION fit with 2Gpc

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

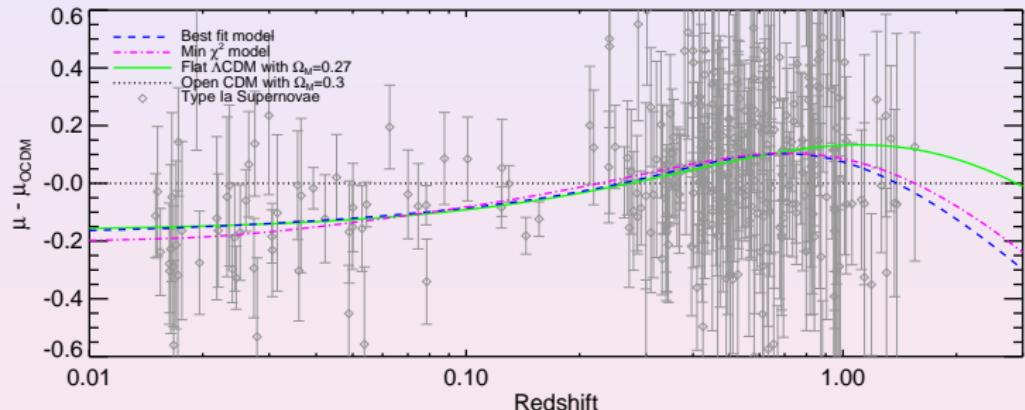


Figure: Taken from Garcia-Bellido & Haugboelle '08
(similar fits also in Zibin et al. '08)

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- **WMAP**
- Putting things together

6 Other cosmological observations

The Λ CDM fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- We try to fit the WMAP 3-yr data

The Λ CDM fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- We try to fit the WMAP 3-yr data
- We look at TT and TE correlations, using CosmoMC

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)
 - Non-sphericity (again effect on low- l)

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)
 - Non-sphericity (again effect on low- l)
- We do not consider them: just EdS with h_{out} ,

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)
 - Non-sphericity (again effect on low- l)
- We do not consider them: just EdS with h_{out} , with some assumptions on the primordial spectrum:

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations
Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)
 - Non-sphericity (again effect on low- l)
- We do not consider them: just EdS with h_{out} , with some assumptions on the primordial spectrum:
 - n_s plus running α_s

How do we fit?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
- Possible “secondary” effects in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
Small because of compensation
 - off-center location: dipole and integrated effect (low- l)
 - Non-sphericity (again effect on low- l)
- We do not consider them: just EdS with h_{out} , with some assumptions on the primordial spectrum:
 - n_s plus running α_s
 - Flat spectrum plus bump (as in P. Hunt and S. Sarkar, arXiv:0706.2443 [astro-ph]; A. Blanchard, M. Douspis, M. Rowan-Robinson and S. Sarkar, Astron. Astrophys. **412**, 35 (2003) [arXiv:astro-ph/0304237].)

Priors (Λ CDM)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

The usual prior set is:

- Allow for nonzero Ω_Λ .
- Power-law spectrum with index n_s .
- (eventually with running α_s)
- $P(k) \propto k^{n_s(k_0) + \frac{1}{2} \ln(k/k_0) \alpha_s}$

Priors: without Λ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

A different prior set, that we use:

- **Not** allow for Ω_Λ .
- Power-law spectrum with index n_s .
- with running α_s
- $P(k) \propto k^{n_s(k_0) + \frac{1}{2} \ln(k/k_0) \alpha_s}$

Priors: without Λ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

A different prior set, that we use:

- **Not** allow for Ω_Λ .
- Power-law spectrum with index n_s .
- with running α_s
- $P(k) \propto k^{n_s(k_0) + \frac{1}{2} \ln(k/k_0) \alpha_s}$
- (we also may allow for some curvature)

Fit to WMAP3

Void vs Dark Energy

Motivations

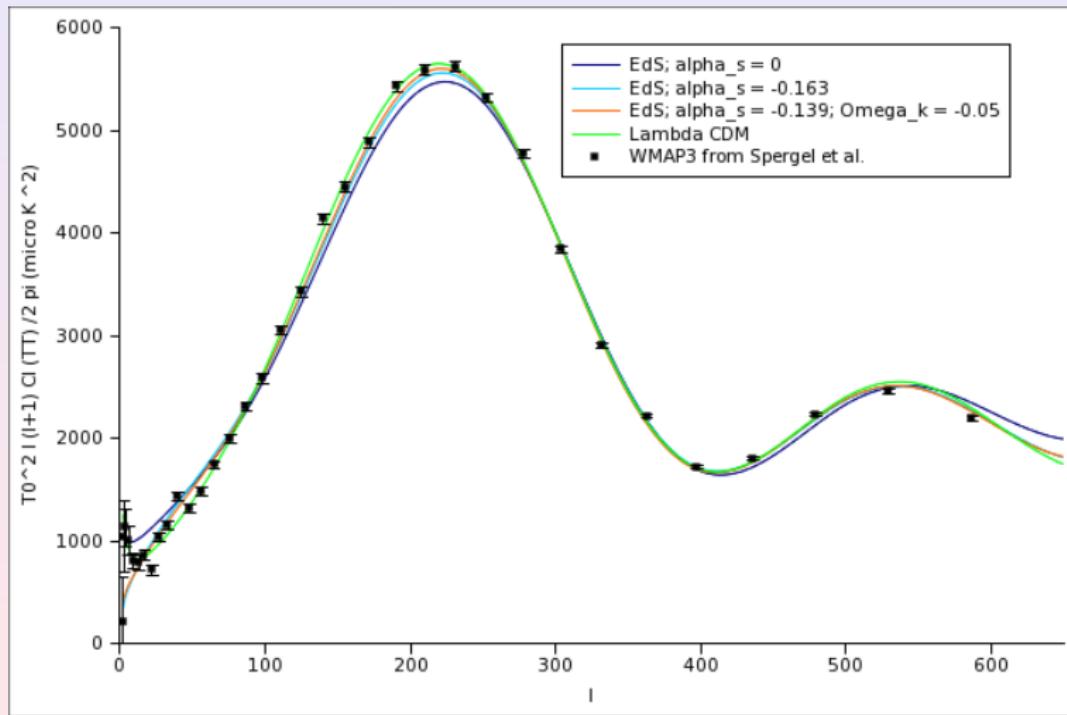
Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data


SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Goodness-of-fit

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Model	C_l^{TT}		$C_l^{TT} + C_l^{TE}$		Total	
	χ^2_{eff}	G.F.	χ^2_{eff}	G.F.	χ^2_{eff}	G.F.
Concordant Λ CDM	1038.9	4.7%	1455.2	11.3%	3538.6	41%
EdS $\alpha_S = 0$	1124.6	0%	1711.9	0%	3652.3	6%
EdS $\alpha_S \neq 0$	1057.8	1.9 %	1475.5	5.7%	3577.4	24.6%
EdS $\alpha_S, \Omega_k = -0.050$	1048.7	2.9%	1466	7.9%	3560.9	31.1%

Table:

1st column: high-/ TT ($31 \leq l \leq 1000$)

2nd column: high-/ TT ($31 \leq l \leq 1000$) and TE ($24 \leq l \leq 450$)

3rd column: total of TT ($2 \leq l \leq 1000$) and TE ($2 \leq l \leq 450$)

Result for parameters

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)

Result for parameters

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)

It has to be consistent with the SNIa analysis and the local measurements of h

Result for parameters

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)

It has to be consistent with the SNIa analysis and the local measurements of h

- low n_S (about ~ 0.73)

and large negative α_s (about ~ -0.16)

Result for parameters

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)
It has to be consistent with the SNIa analysis and the local measurements of h
- low n_S (about ~ 0.73)
and large negative α_s (about ~ -0.16)
- larger value of Ω_M/Ω_b (around 10 instead of 6)

Result for parameters

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)
It has to be consistent with the SNIa analysis and the local measurements of h
- low n_S (about ~ 0.73)
and large negative α_s (about ~ -0.16)
- larger value of Ω_M/Ω_b (around 10 instead of 6)
- $\Omega_b h_{\text{out}}^2$ ($\sim 0.018^{+0.001}_{-0.002}$) consistent with BBN constraint
(which is $0.017 \leq \Omega_b h_{\text{out}}^2 \leq 0.024$, at 95% C.L.)

Parameter values

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

	Λ CDM	EdS, $\alpha_s = 0$	EdS, $\alpha_s \neq 0$	EdS, $\alpha_s, \Omega_k \neq 0$
$\Omega_b h_{\text{out}}^2$	$0.022^{+0.002}_{-0.002}$	$0.022^{+0.001}_{-0.001}$	$0.018^{+0.001}_{-0.002}$	$0.019^{+0.002}_{-0.001}$
$\Omega_m h_{\text{out}}^2$	$0.106^{+0.021}_{-0.013}$	$0.198^{+0.008}_{-0.011}$	$0.186^{+0.011}_{-0.009}$	$0.167^{+0.009}_{-0.007}$
Ω_Λ	$0.759^{+0.041}_{-0.103}$	0	0	0
z_{re}	$11.734^{+4.993}_{-7.619}$	$8.697^{+4.351}_{-6.694}$	$13.754^{+2.246}_{-5.752}$	$13.342^{+2.55}_{-5.011}$
Ω_k	0	0	0	-0.05
n_s	$0.96^{+0.04}_{-0.04}$	$0.94^{+0.021}_{-0.038}$	$0.732^{+0.07}_{-0.071}$	$0.761^{+0.069}_{-0.069}$
α_s	0	0	$-0.161^{+0.044}_{-0.044}$	$-0.13^{+0.037}_{-0.048}$
$10^{10} A_s$	$20.841^{+3.116}_{-3.442}$	$25.459^{+2.135}_{-2.766}$	$25.302^{+2.182}_{-2.968}$	$23.975^{+2.198}_{-2.448}$
Ω_m/Ω_b	$4.73^{+0.999}_{-0.485}$	$9.119^{+0.341}_{-0.357}$	$10.094^{+0.645}_{-0.489}$	$8.929^{+0.512}_{-0.541}$
h_{out}	$.72857^{+0.05137}_{-0.07393}$	$.46857^{+0.0888}_{-0.01307}$	$.4523^{+0.01291}_{-0.01129}$	$.42069^{+0.01107}_{-0.00919}$
Age/GYr	$13.733^{+0.389}_{-0.369}$	$13.908^{+0.399}_{-0.258}$	$14.408^{+0.369}_{-0.4}$	$15.338^{+0.342}_{-0.393}$
σ_8	$0.77^{+0.121}_{-0.109}$	$1.012^{+0.056}_{-0.081}$	$0.919^{+0.07}_{-0.075}$	$0.862^{+0.06}_{-0.063}$
τ	$0.095^{+0.072}_{-0.074}$	$0.047^{+0.037}_{-0.041}$	$0.079^{+0.023}_{-0.044}$	$0.081^{+0.024}_{-0.041}$

Table: Most likely parameter values with 1σ errors for the various COSMOMC Runs

Parameter likelihood

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

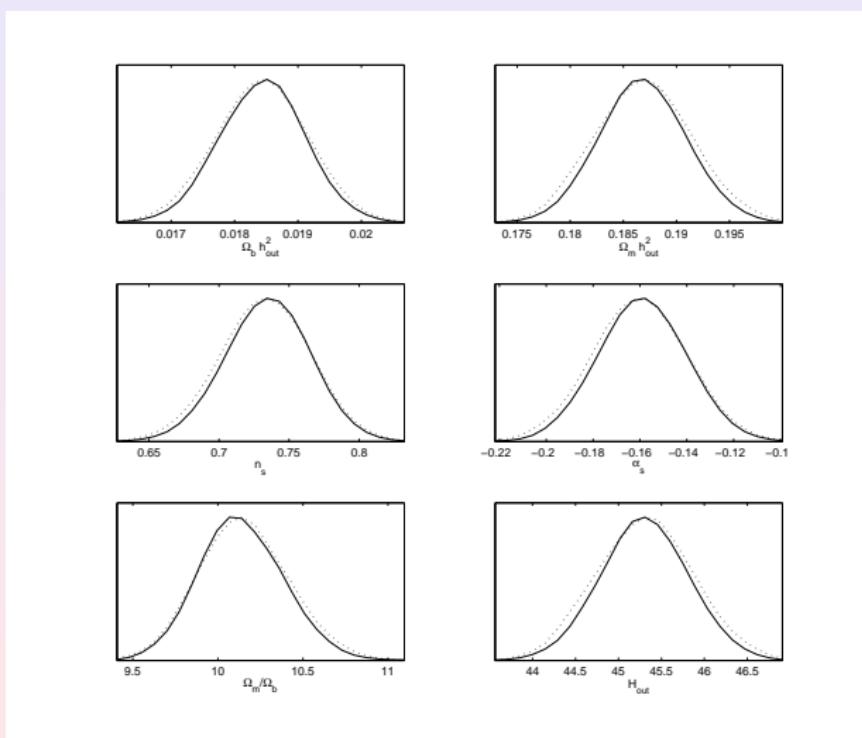


Figure: likelihoods to WMAP 3-yr for the run “EdS with α_s ”

Parameter likelihood

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

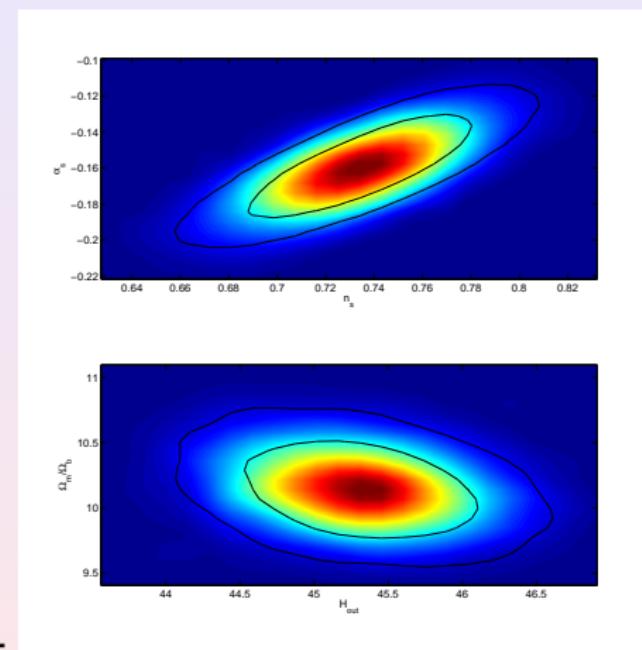


Figure: Contour likelihood plots to WMAP 3-yr for the run “EdS with α_s ”

Outline

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

1 Motivations

2 Backreaction

3 Light propagation

- Results

4 Local Void

- Minimal Void
- Building the model
- Light propagation

5 Fitting the data

- SNIa Hubble diagram
- WMAP
- Putting things together

6 Other cosmological observations

Is this compatible with local h ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

● A crucial point: we have

- a low h_{out}
- a constraint on $\mathcal{J} = h/h_{\text{out}}$

Is this compatible with local h ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

● A crucial point: we have

- a low h_{out}
- a constraint on $\mathcal{J} = h/h_{\text{out}}$

● We get a constraint on h

Is this compatible with local h ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- A crucial point: we have
 - a low h_{out}
 - a constraint on $\mathcal{J} = h/h_{\text{out}}$
- We get a constraint on h . Compatible with local observations?

Is this compatible with local h ?

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- A crucial point: we have

- a low h_{out}
- a constraint on $\mathcal{J} = h/h_{\text{out}}$

- We get a constraint on h . Compatible with local observations?

- $h = 0.72 \pm 0.08$ from HST (W. L. Freedman *et al.*, *Astrophys. J.* **553**, 47 (2001))

- $h = 0.62 \pm 0.01 \pm 0.05$ from HST with corrected Cepheids (A. Sandage *et al.*, *Astrophys. J.* **653**, 843 (2006))

- $h = 0.59 \pm 0.04$ from Supernovae (Parodi, Saha, Sandage and Tammann, arXiv:astro-ph/0004063.)

- $h = 0.54_{-.04}^{-.03}$ SZ effect ($z \approx 1$) (E. D. Reese *et al.* *Astrophys. J.* **581**, 53 (2002))

Parameter Contours

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

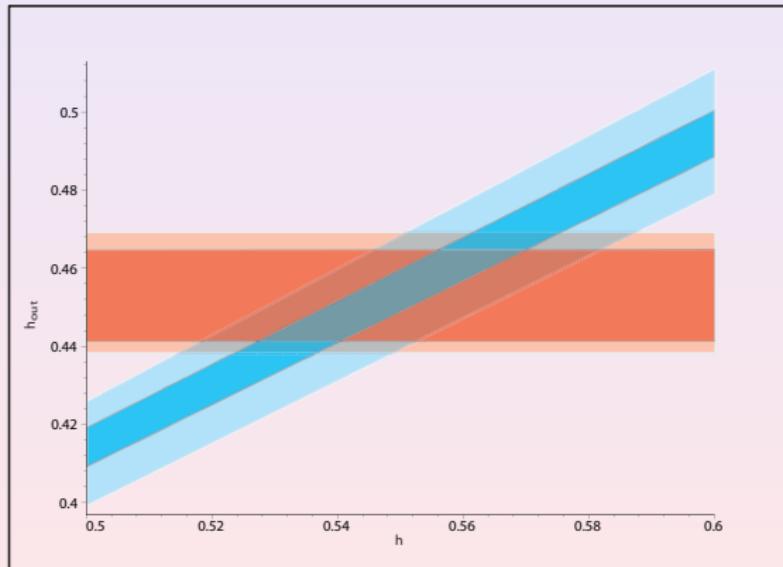


Figure: 1- σ and 2- σ Contour plots for h vs. h_{out} .

Summarizing the constraints

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

At 95% C.L. we have (for $L \approx 250/h$ Mpc) :

- $1.17 \leq \mathcal{J} \leq 1.25 \Rightarrow 0.42 \leq |\delta_0| \leq 0.58$

Summarizing the constraints

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

At 95% C.L. we have (for $L \approx 250/h$ Mpc) :

- $1.17 \leq \mathcal{J} \leq 1.25 \Rightarrow 0.42 \leq |\delta_0| \leq 0.58$

(but note that the average $\sqrt{\langle \delta^2 \rangle}$ is smaller)

Summarizing the constraints

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

At 95% C.L. we have (for $L \approx 250/h$ Mpc) :

- $1.17 \leq \mathcal{J} \leq 1.25 \Rightarrow 0.42 \leq |\delta_0| \leq 0.58$

(but note that the average $\sqrt{\langle \delta^2 \rangle}$ is smaller)

- $0.44 \leq h_{\text{out}} \leq 0.47$

Summarizing the constraints

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

At 95% C.L. we have (for $L \approx 250/h$ Mpc) :

- $1.17 \leq \mathcal{J} \leq 1.25 \Rightarrow 0.42 \leq |\delta_0| \leq 0.58$

(but note that the average $\sqrt{\langle \delta^2 \rangle}$ is smaller)

- $0.44 \leq h_{\text{out}} \leq 0.47$

- $0.51 \leq h \leq 0.59$

The bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- The same happens for the model with a bump in the primordial spectrum (S. Sarkar et al. '03 and '07)
- The bump is at a scale of about $100/h$ Mpc

The bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- The same happens for the model with a bump in the primordial spectrum (S. Sarkar et al. '03 and '07)
- The bump is at a scale of about $100/h$ Mpc
- It could come from two rapid phase transitions

The bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- The same happens for the model with a bump in the primordial spectrum (S. Sarkar et al. '03 and '07)
- The bump is at a scale of about $100/h$ Mpc
- It could come from two rapid phase transitions
- It gives a good fit to WMAP (better than Λ CDM)

The bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- The same happens for the model with a bump in the primordial spectrum (S. Sarkar et al. '03 and '07)
- The bump is at a scale of about $100/h$ Mpc
- It could come from two rapid phase transitions
- It gives a good fit to WMAP (better than Λ CDM)
- The original proposal had too low h (~ 0.44)

The bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP

Putting things together

Other cosmological observations

Conclusions

- The same happens for the model with a bump in the primordial spectrum (S. Sarkar et al. '03 and '07)
- The bump is at a scale of about $100/h$ Mpc
- It could come from two rapid phase transitions
- It gives a good fit to WMAP (better than Λ CDM)
- The original proposal had too low h (~ 0.44)
⇒ Combine with the Minimal Void scenario

h in the Bump model

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

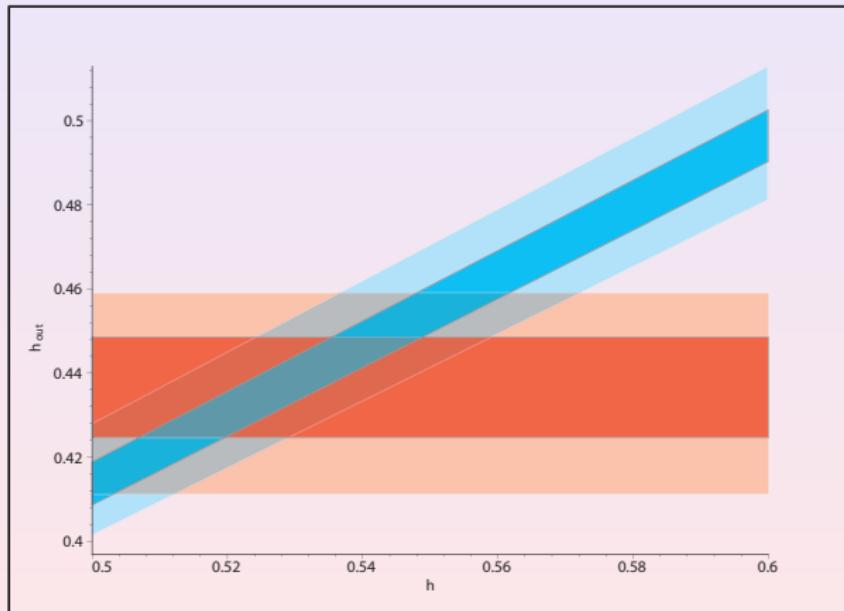


Figure: 1- σ and 2- σ Contour plots for h vs. h_{out} .

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination **vs.** angular distance at $z = 0.35$

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination **vs.** angular distance at $z = 0.35$
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination **vs.** angular distance at $z = 0.35$
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$
- But it also depends on the spectral index n_s :

$$D_V = 1370 \pm 64 \text{ and } \Omega_m h^2 = 0.130 (n_s/0.98)^{-1.2} \pm 0.011$$

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination **vs.** angular distance at $z = 0.35$
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$
- But it also depends on the spectral index n_s :

$$D_V = 1370 \pm 64 \text{ and } \Omega_m h^2 = 0.130 (n_s/0.98)^{-1.2} \pm 0.011$$

- Caveat:
 - Constraints are derived *using* Λ CDM

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Using $n_s \sim 0.73$ the constraint is:

$$\Omega_m h_{\text{out}}^2 = 0.185 \pm 0.011 , \quad (6.9)$$

- It agrees with our value (0.205 ± 0.01) within 2σ .

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Using $n_s \sim 0.73$ the constraint is:

$$\Omega_m h_{\text{out}}^2 = 0.185 \pm 0.011, \quad (6.9)$$

- It agrees with our value (0.205 ± 0.01) within 2σ .

- On the other hand:

$$D_A(0.35) = 1375 \text{ Mpc} \quad \text{for } \Lambda CDM$$

$$D_A(0.35) = 1850 \text{ Mpc} \quad \text{for EdS with } h_{\text{out}} \sim 0.45,$$

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Using $n_s \sim 0.73$ the constraint is:

$$\Omega_m h_{\text{out}}^2 = 0.185 \pm 0.011 , \quad (6.9)$$

- It agrees with our value (0.205 ± 0.01) within 2σ .

- On the other hand:

$$D_A(0.35) = 1375 \text{ Mpc} \quad \text{for } \Lambda CDM$$

$$D_A(0.35) = 1850 \text{ Mpc} \quad \text{for EdS with } h_{\text{out}} \sim 0.45 ,$$

- Not consistent with** Eisenstein et al., 2005:

$$D_V(0.35) = 1370 \pm 64 \text{ Mpc} ,$$

Problem with BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- The problem is the low value of h_{out} from CMB!
($h_{\text{out}} \sim 0.56$ would work...)

Problem with BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- The problem is the low value of h_{out} from CMB!
($h_{\text{out}} \sim 0.56$ would work...)
- Possible ways out:

Problem with BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- The problem is the low value of h_{out} from CMB!
($h_{\text{out}} \sim 0.56$ would work...)
- Possible ways out:
 - *Gpc* Void (Alnes et al., Garcia-Bellido & Haugboelle).
Flts well, but analysis with full CMB not done yet. It can also fit $D(0.35)/D(0.2)$ (Percival et al.)

Problem with BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- The problem is the low value of h_{out} from CMB!
($h_{\text{out}} \sim 0.56$ would work...)
- Possible ways out:
 - *Gpc* Void (Alnes et al., Garcia-Bellido & Haugboelle).
Fits well, but analysis with full CMB not done yet. It can also fit $D(0.35)/D(0.2)$ (Percival et al.)
 - Fit CMB with higher h
(Non-compensated Void?)

Radial BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- It is possible to look (Gaztanaga et al.'08) for the BAO scale only for the radial direction as Δz (model-independent)

Radial BAO

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void
Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- It is possible to look (Gaztanaga et al.'08) for the BAO scale only for the radial direction as Δz (model-independent)
- Zibin, Moss & Scott '08: it does not fit (*Gpc Void*) together with full CMB (which they fit with very low h and non-compensated Void)
- Garcia-Bellido & Haugboelle '08: it fits as well as Λ CDM(*Gpc Void*), but only first peak location and SN Union (no full CMB).

CMB Dipole

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- How much Observer can be off-center?

CMB Dipole

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- How much Observer can be off-center?
- Observer at Distance d_O
- $\frac{\delta T}{T} \sim v_O \sim \dot{d}_O$
- CMB dipole $\leq 10^{-3}$ if $d_O \sim 15 - 20$ Mpc (Tomita et al., Alnes et al.'06)

CMB Dipole

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- How much Observer can be off-center?
- Observer at Distance d_O
- $\frac{\delta T}{T} \sim v_O \sim \dot{d}_O$
- CMB dipole $\leq 10^{-3}$ if $d_O \sim 15 - 20$ Mpc (Tomita et al., Alnes et al.'06)
- Higher multipoles go as higher powers of v_O : negligible¹⁰.

¹⁰Alnes et al. '06

CMB Dipole

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- How much Observer can be off-center?
- Observer at Distance d_O
- $\frac{\delta T}{T} \sim v_O \sim \dot{d}_O$
- CMB dipole $\leq 10^{-3}$ if $d_O \sim 15 - 20$ Mpc (Tomita et al., Alnes et al.'06)
- Higher multipoles go as higher powers of v_O : negligible¹⁰.
- Bulk dipole of the same size of our dipole 600km/s (Kashlinsky et al. '08: 600 – 1000km/s)

¹⁰Alnes et al. '06

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- All objects inside the Void have some peculiar velocity

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- All objects inside the Void have some peculiar velocity
- This gives rise to $\frac{\delta T}{T} \sim \frac{v}{c}$ and spectrum distortions (kinetic SZ effect)

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- All objects inside the Void have some peculiar velocity
- This gives rise to $\frac{\delta T}{T} \sim \frac{v}{c}$ and spectrum distortions (kinetic SZ effect)
- Goodman '95: $v/c \lesssim 0.01$ (at $z \sim 0.2$)
- Caldwell-Stebbins '07-'08: rule out Voids with $z_b > 0.9$

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation

Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Garcia-Bellido & Haugboelle: using 9 clusters ($0.2 \leq z \leq 0.6$) with detection of spectral distortion one finds:
 $\bar{v} = 320 \text{ km/sec}$ and $\sigma = 1600 \text{ km/sec}$ (σ expected is only about 400 km/sec!)
- Exclude $L > 1.5 \text{ Gpc}$, with $\Omega_{IN} = 0.23$.

kSZ

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Garcia-Bellido & Haugboelle: using 9 clusters ($0.2 \leq z \leq 0.6$) with detection of spectral distortion one finds:
 $\bar{v} = 320 \text{ km/sec}$ and $\sigma = 1600 \text{ km/sec}$ (σ expected is only about 400 km/sec!)
- Exclude $L > 1.5 \text{ Gpc}$, with $\Omega_{IN} = 0.23$.
- But Kashlinsky et al. measure high $\frac{v}{c} \sim 1000 \text{ km/sec}$ on $300 \text{ Mpc}/h$ (they assume kSZ, but do not see spectral distortions).

Other ways to test the Copernican principle

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Clarkson, Bassett and Lu '08: a consistency relation:
 $\mathcal{C}(z) = 0$ for FLRW, at *all* z ,

$$\mathcal{C}(z) \equiv 1 + H^2(DD'' - D'^2) + HH'DD'$$

- Uzan, Clarkson and Ellis '08: Time drift of the redshift (over 10 years)

Anisotropy of H

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Similarly the expansion is anisotropic if d_O nonzero¹¹.

Anisotropy of H

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Similarly the expansion is anisotropic if d_O nonzero¹¹.
- Two papers claim significant anisotropy in H :
 - D.Schwarz & Weinhorst '07: in the SNIa dataset ($> 95\% C.L.$)
 - McClure & Dyer '07: in the *Hubble Key Project* data ($9 - 20 \text{ km/sec}$)

¹¹ Tomita (2000), Alnes et al. ('06)

Anisotropy of H

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Similarly the expansion is anisotropic if d_O nonzero¹¹.
- Two papers claim significant anisotropy in H :
 - D.Schwarz & Weinhorst '07: in the SNIa dataset ($> 95\% C.L.$)
 - McClure & Dyer '07: in the *Hubble Key Project* data ($9 - 20 \text{ km/sec}$)
- In addition this should be correlated with CMB dipole

¹¹ Tomita (2000), Alnes et al. ('06)

Anisotropy of H

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Similarly the expansion is anisotropic if d_O nonzero¹¹.
- Two papers claim significant anisotropy in H :
 - D.Schwarz & Weinhorst '07: in the SNIa dataset ($> 95\% C.L.$)
 - McClure & Dyer '07: in the *Hubble Key Project* data ($9 - 20 \text{ km/sec}$)
- In addition this should be correlated with CMB dipole
- Also to be explored: non-sphericity of Void

¹¹ Tomita (2000), Alnes et al. ('06)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- It is well-known that linear Φ constant in Matter Dominated Universe

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta\Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta\Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS
- Detected with some significance by several groups at low- l
- Consistent with $\Omega_\Lambda \sim 0.7$

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta\Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS
- Detected with some significance by several groups at low- l
- Consistent with $\Omega_\Lambda \sim 0.7$
- Can we get this in our scenario?

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta\Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS
- Detected with some significance by several groups at low- l
- Consistent with $\Omega_\Lambda \sim 0.7$
- Can we get this in our scenario?
 - Inside the Void
 - If there is curvature
 - If there are other big Voids in the sky \Rightarrow nonlinear evolution of Φ
- Effect of order $(L/r_{\text{hor}})^3 \sim \mathcal{O}(10^{-5})$

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- A Void of at least $L \sim 200 - 250 \text{ Mpc}/h$ scale consistent with WMAP and SNIa (Riess data), and local h
- δ quite large (~ 0.4)
Incompatible with the expected value ($\delta \sim 0.04$).

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- A Void of at least $L \sim 200 - 250 \text{ Mpc}/h$ scale consistent with WMAP and SNIa (Riess data), and local h
- δ quite large (~ 0.4)
Incompatible with the expected value ($\delta \sim 0.04$).
- But some observations seem to indicate such structures (need for more observations)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- A Void of at least $L \sim 200 - 250 \text{ Mpc}/h$ scale consistent with WMAP and SNIa (Riess data), and local h
- δ quite large (~ 0.4)
Incompatible with the expected value ($\delta \sim 0.04$).
- But some observations seem to indicate such structures (need for more observations)
- Need for larger Void to fit Union data ($L \gtrsim 500 \text{ Mpc}/h$)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- A Void of at least $L \sim 200 - 250 \text{ Mpc}/h$ scale consistent with WMAP and SNIa (Riess data), and local h
- δ quite large (~ 0.4)
Incompatible with the expected value ($\delta \sim 0.04$).
- But some observations seem to indicate such structures (need for more observations)
- Need for larger Void to fit Union data ($L \gtrsim 500 \text{ Mpc}/h$)
- More data will discriminate (especially SDSS-II for Supernovae)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consistency with BAO problematic: H_0 too low

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consistency with BAO problematic: H_0 too low

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Consistency with BAO problematic: H_0 too low
- Even larger Void? $\mathcal{O}(1 \text{ Gpc}/h)$ (Garcia-Bellido & Haugboelle '08)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consistency with BAO problematic: H_0 too low
- Even larger Void? $\mathcal{O}(1 \text{ Gpc}/h)$ (Garcia-Bellido & Haugboelle '08)
- Checking with curved models (*work in progress*)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Consistency with BAO problematic: H_0 too low
- Even larger Void? $\mathcal{O}(1 \text{ Gpc}/h)$ (Garcia-Bellido & Haugboelle '08)
- Checking with curved models (*work in progress*)
- Non-compensated Voids? (monopole $T_0 = 2.73K$ gets large correction) Zibin-Moss-Scott '08

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion
- And would be consistent with recent Large Bulk flow measurements

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion
- And would be consistent with recent Large Bulk flow measurements
- Requires peculiar primordial spectrum: low tilt, large running.

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion
- And would be consistent with recent Large Bulk flow measurements
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman- α forest to be included

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion
- And would be consistent with recent Large Bulk flow measurements
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman- α forest to be included
- ISW effect to be included

Assessment

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

- Observer has to sit **near the center** (10 – 20Mpc in radial position)
- But this may be further detected as anisotropic expansion
- And would be consistent with recent Large Bulk flow measurements
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman- α forest to be included
- ISW effect to be included
- Check if the higher Ω_m/Ω_b is compatible with other data

Short Conclusion

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Backreaction:

Short Conclusion

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void

Building the model

Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Backreaction:

- Theoretically challenging
- A quantitative realistic calculation still missing

Short Conclusion

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Backreaction:

- Theoretically challenging
- A quantitative realistic calculation still missing

Void:

Short Conclusion

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram

WMAP

Putting things together

Other cosmological observations

Conclusions

Backreaction:

- Theoretically challenging
- A quantitative realistic calculation still missing

Void:

- Many observations to reconcile together
- Before considering it as a valid alternative to Λ CDM
- More work to be done (and more data will soon discriminate)

Void vs Dark Energy

Motivations

Backreaction

Light propagation
Results

Local Void

Minimal Void
Building the model
Light propagation

Fitting the data

SNIa Hubble diagram
WMAP
Putting things together

Other cosmological observations

Conclusions

Can an Inhomogeneous Universe mimic Dark Energy?

Alessio Notari ¹²

CERN

Dec. 2008 / Workshop @ KEK

¹²In collaboration with:

Rocky Kolb, Antonio Riotto, Sabino Matarrese, Tirthabir Biswas, Stephon Alexander, Deepak Vaid, Reza Mansouri