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Dark energy problems

@ Supernovae la data interpreted in the framework of FRLW
solution strongly disfavor a matter dominated universe and
strongly support a dominant dark energy component

@ Cosmological constant problem
@ What is dark energy ?

@ Dark energy dominance coincides with epoch of
nonlinear structure formation
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Figure: Best-fit confidence regions in the Qu—£2, plane. The 68%,
90%, 95%, and 99% statistical confidence regions are shown.From
Perimutter,1998np
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Different approaches to mimic dark energy

o Spatial averaging
@ Attempts to obtain a positive averaged acceleration

@ Itis not related to direct observables, because light
“feels” real geometry

@ It can lead to the definition of unobservable
guantities because of causality violation

Inversion method

It tries to reproduce direct observables such as D (z)
Numerical instability and degenerancy

Need of extra constraints == RSSE , CMB
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Spatial averaging

LTB solution

@ SO(3) invariant, P = 0, perfect fluid
@ is not a perturbative deviation from FRLW

2
ds? — a2+ R g2 pegqz

1+ 2E(r)
N 2
R\ _ 2E(r) N 2M(r)
R/  R2 RS
M2 M/
Th=lp=7" R%R,’ P =0]
@ E(r) and M(r) are arbitrary functions of r

@ R(t,r)



Spatial averaging

@ Bang function t,(r) gives initial condition for R
R(ty(r),r) =0

@ Introducing the following variables

R(t,r 2E(r 6M (r
at.r)= R0 gy = 2B g = M)
2 _ w2, a2 arr\2  dr? 2402
ds® = —dt> +a {(1+ ) e A%
a 2:_@ po(r)

a a2 3ad

Antonio Enea Romano



Spatial averaging

Spatial averaging

@ Following the standard spatial averaging procedure we
define the volume for a spherical domain ,0 <r < rp

™ R2R,

\/1+2E

@ The length associated to the domain is
Lp = Vvg/°

@ The deceleration parameter gp and the
average acceleration ap are defined as:

Vp =4

do = —LpLp/L3

aD:L/L



Spatial averaging

Some examples

@ Chuang, Gu and Hwang (2008) studied this type of LTB
models:

_ b (r/r)™
ty(r) = —m

(e F2)(r /)™
k(r)=— 15 (r/r)™ +1

po(r) = constant

Antonio Enea Romano



Spatial averaging

Table: Three examples of the domain acceleration.

t m | po | ™ | Mk [ he | 1t | Nt |hy do

1101 | 1 1 | 06| 20|10 06| 20 |10] —0.0108
0.1 |11]10°][ 09|40 | 40| 09|40 [10] -1.08
3/10 8] 1 [101°|0.77 100|100 092|100 50 || —6.35

N
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Spatial averaging

Plot of k(r) and of the bang function t,(r)

Of) 02 04 _ 06 __ 08 1
-105

k(r)—30§
-405

Figure: k(r) is plotted for the model corresponding to row 2 of Table I .

Antonio Enea Romano



Spatial averaging
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Figure: ty(r) is plotted for the model corresponding to row 2 of Table |
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Spatial averaging

Relation between ap and physical observations

@ Defining ty as the time at which q(ty) = qp, we solve the
null geodesic equation assuming the following initial

conditions :
dT(r) _ R(r,T(r))
/11 2E(r)
T(r=0)=tq

R(to(r),r) =0
@ This is the natural way to map these models into
luminosity distance observations for a central
observer which should receive the light rays at the time tq
at which the averaged acceleration is positive.

Antonio Enea Romano



Spatial averaging

Averaging scale is larger than the event horizon

@ We then evolved the differential equation to find :

T(rHor) = 1:b(rHor)
@ For one model we obtain

Mor < TIp

rp is the upper limit of the volume averaging integral.
(Romano, 2007)

@ In this context ryor can be thought of as the
co-moving horizon , the maximum radial
coordinate from which photons can reach the central
observer O¢ at time tg.
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Spatial averaging

Singularity along the geodesic

@ As it can be seenin figure at r = ryqo thereis a
singularity along the geodesic, corresponding to the fact
that light cannot reach the central observer at time tq
from points at radial coordinate r > ryor.

R(T(rHor), rHor) = R(tb(rHOI‘)a rHor) = 0.

@ Since regions of the universe at radial coordinates greater
than ryor have never been in causal contact with O¢ at
time tq, the scale at which qp is defined is beyond the
region causally connected to O¢. Therefore qp cannot be
detected from local observation of the luminosity distance
which is used to define a™RW.,
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Spatial averaging

Plot of the geodesics
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Figure: R(T (r),r) and R’(T (r),r) are plotted for model 2 .At about
Nor=0.03298 there is a singularity.
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Spatial averaging

What did we learn?

@ This example shows how ap may not even be causally
related to the local observation of D (z), and gives a
reverse example of the results obtained by Enqgvist where
it was studied a LTB model
fitting the observed luminosity distance
consistent with a positive afR"W | but without
positive averaged acceleration ap.

@ Our results do not rule out LTB  models as
alternatives to dark energy since, since the inversion
method allows to obtain the observed luminosity
distance without any averaging
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Spatial averaging

@ We can conclude that the luminosity distance D (z)
contains more information than the spatially
averaged acceleration ap because the first is
sensitive to the causal structure of the entire
space-time while the second is the result of
averaging only the spatial part of the geometry, making
the relation between them in general
not one-to-one .

@ The study of the constraints on the local
observability of averaged quantities will be
addressed in a more general way, not only in the context of
LTB models, in a future work.

Antonio Enea Romano



Inversion method

e Inversion method

Antonio Enea Romano



Inversion method

Inversion method

{E(r),M(r),Ro(r)} = Di(z) = R(1 +2)
4

{E(r),DL(z),Ro(r)} = M(r)

Results
@ If {E(r) = Ro(r) = 0} we can reproduce FRLW with
Qu =1 and D (z) is independent of M(r)

@ Making an ansatz for E(r) we find a M(r) which
corresponds  to the observed luminosity distance best
fitted by a Qa = 0.7, Qu = 0.3 FRLW model.
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Inversion method

Geodesic equations

@ The radial coordinate as a function of time along null
geodesic satisfies the equations :

ar  SVI+2E(r 2E(r) + 2

dz ~ (1+ z)[E’(r) + M’/R — M&R/R2]

dt —SIOR((2).1(2))]\/2E(r) + 2,
dz ~ (1+2z)[E'(r)+M'/R —M§R/R?]’

@ The physics is that if one knows a single radial geodesic
history of a photon which was emitted at an event (t;,r;)
and observed at (t,, ), one knows the full space-time
geometry in the region (t; <t <tp,ry <r <r,) of the LTB
solution owing to its spherical symmetry.
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Inversion method

Another equation

@ three unknown functions {M1(z),r(z),t(z)} =

@ another independent equation.
This is provided by dR /dz through the chain rule:

d oM dt dr

@ Finally we can solve these 3 equations to find M(r)

{E(r),DL(2);Ro(r)} = {t(2),r(2), Ma(2)}

M(r) = My(z(r))
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Inversion method

@ Aslong as M/R > E, the luminosity distance curve no
longer accurately probes the geometry of the LTB model
since different geometries lead to
approximately the same R (z) = D (z2)/(1 + 2)°.

@ The inversion method will necessarily be unstable once
the curvature term E can be neglected
Schematically, we will have

dr ER v2M1R dr
az "My T FERVRETS
z M (L+2)[3EMm,]dz

when ER/M; becomes small and F ~ O({Lh).

. V/2M;R . .
Since FEEEa 1 in the limit that ER /M; — O,
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Redshift spherical shell energy

How to consistently slice redshift space in spherical
shells?

@ t(z) and r(z) are both functions of redshift z and dipend
on the cosmological model

@ Itis important to respect the observed object evolution
time scale

At =t(z) —t(z + AZ)

AZ(z) =t i(z) - At] -z
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Redshift spherical shell energy

Determining At

@ The value of At depends on the particular type of
astrophysical objects  considered, and requires a good
understanding of their evolution.

@ In order to provide an example comparable with
previous homogeneity studies , we will use the value
implied by the redshift range 0.2 < z < 0.35 studied by
Hogg, assuming a flat FRLW model with
{Qv =0.3,Q4 = 0.7}

(14+2)7*

_ dx
t(2)rRw = Hp * /
0

[Qux—1 + Qax?] 1/2
At = teriw (02) — tFRLW (035) ~ 1.4Gyr
AZrriw (0.2) = 0.35 — 0.2 = 0.15
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Redshift spherical shell energy

Plot of AZ(z)

nz(z)

Figure: AZ(z) is plotted as a function of the redshift for the LTB
model considered (thick line) and for a FRLW flat Universe with
Qp = 0.7, Qu = 0.3 (thin line).
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Redshift spherical shell energy

Redshift spherical shell energy

@ Using the volume element
R?R,, i
1+ 2E(r)
we can now define (RSSE) (Romano, 2007) pss(z) as:

dVv(r,t) =dv(r,t)dr = 4r

z+AZ(z)

pes() = / p(2)aV (2') =

z
z+AZ(z)

J
| T EG ) &
p(2) = p(r(2).1(2)




Redshift spherical shell energy

Check : FRLW case near z=0

@ In the case of a FRLW Universe we get :
1

r(z)rrw = Ho 't /

(1+z)-?

dx
[QuxT + Qax?] 1/2

z+AZ(z)

pss(Z)FrRiW = / aéo)s a(z)%4rr(2)%d(r(2)) =

z

milz: [reruw (Z + AZ(2))® — reruw (2)°)]

3
pss(0)rrw X eruw (AZ (0))3

@ As expected, pss(0) scales as the third power of the
co-moving distance rgrw (Scaramella).
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Redshift spherical shell energy

Examples

@ We considered two models which both fit

successfully the observed high redshift supernovae
luminosity distance D (z)

@ Flat FRLW model with {Qx = 0.7,Qy = 0.3}
@ LTB model proposed by Alnes corresponding to:

E(r)= 2HM,r (Bo — 5 [1 — tanh SAT )
M(r) = 2HL,or (o 7[1 tanh SAT )

ao0=1,00=0,A8=—Aa =09, Ar = 0.4r,

1
o~ ——H ~H
0 5H0’ 1,0 0

where Hg ~ 50km/sMpc.
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Redshift spherical shell energy

Plot of RSSE for the two models

pOZ) 27

Figure: po(z) = Logio[pss(z)/pss(0)] is plotted as a function of the
redshift for the LTB model considered (thick line) and for a FRLW flat
Universe with Qp = 0.7, Qy = 0.3 (thin line).
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Redshift spherical shell energy

Relation of RSSE to astrophysical observations

@ The quantity we have introduced to describe the radial
energy distribution  of isotropic universes, could be used
to distinguish between different models only if we can
relate it to some astrophysical
observable .

@ A natural candidate, which has been used in previous
homogeneity tests, would be the galaxy number count
n(z) , but its relation to p(z) can be rather complicated,
due to different factors which should be taken into
consideration.
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Redshift spherical shell energy

@ In general we can write :

n(z) = F(z)p(2)

where F(z) is function of the redshift which depends on
different effects such as K-correction, distance
selection effect , the bias between barionic and dark
matter , and the mass light ratio relation.

@ Astrophysical evolution  could in fact play a very
important role when comparing shells at very
different redshift , introducing a time
dependency which is not included in the
cosmological model, and could make more difficult to
distinguish between one model and another.
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Redshift spherical shell energy

@ An alternative application of the proposed method could
consist in the calculation of RSSE for shells
centered at different points  in space time.

@ It would also be important to asses if the same RSSE
could correspond to different homogeneous and
inhomogeneous models , a degeneracy which could be
possible as it has been shown for other cosmological
observables such as the luminosity distance for example.
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Redshift spherical shell energy

Final remarks

@ FRLW cosmic acceleration is not necessarily related to
LTB spatially averaged acceleration

@ Spatial averaging can lead to the construction of
unobservable quantitie s because of causality violation

@ "Cosmological acceleration” s inferred
indirectly assuming homogeneity , so the real focus
should be the direct observations which lead to its
estimation such as D (z), CMB, RSSE.

@ Recent work by Scott put stronger constraints on LTB
models using both D (z) and CMB

@ Even if inhomogeneities cannot completely
explain the observational data, they could still play an
important role and compete with Dark Energy .
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