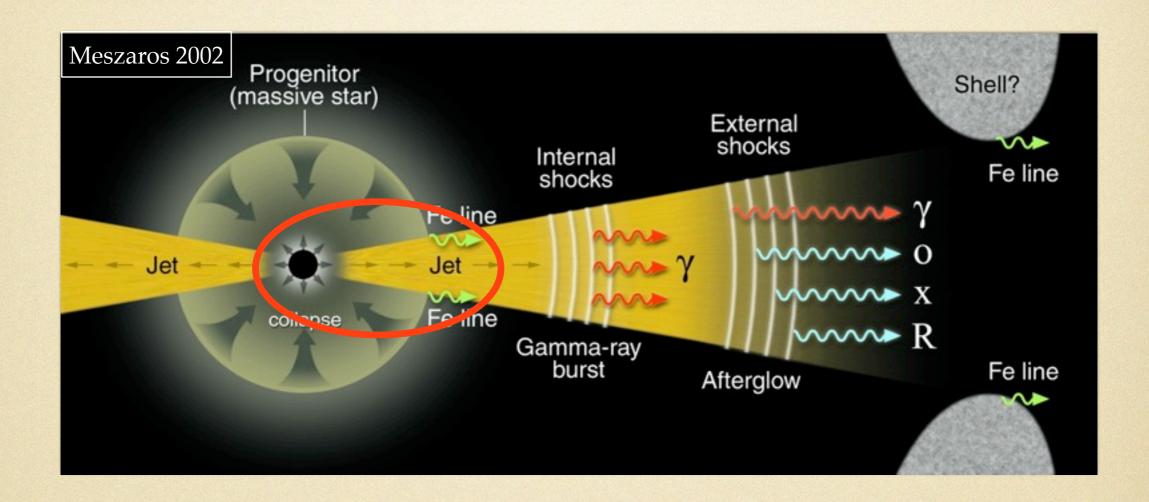
Probing the Central Engine of Long Gamma-Ray Bursts and Hypernovae with Gravitational Waves

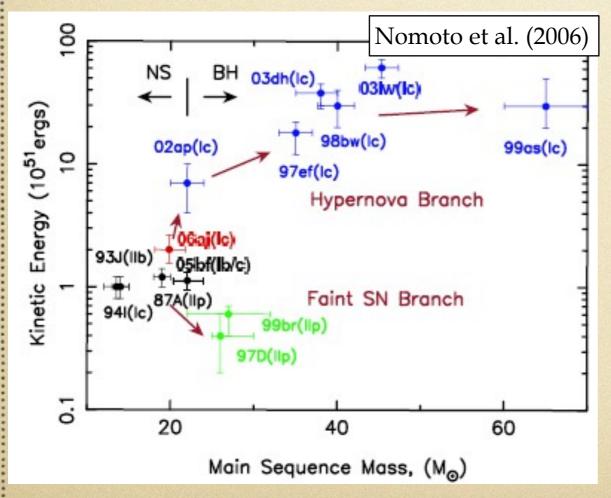

Yudai Suwa (The University of Tokyo)

Collaboration with K. Murase (Kyoto U.) arXiv:0906.3833

Contents

- Introduction
- Collapsar model
- Gravitational wave from collapsar

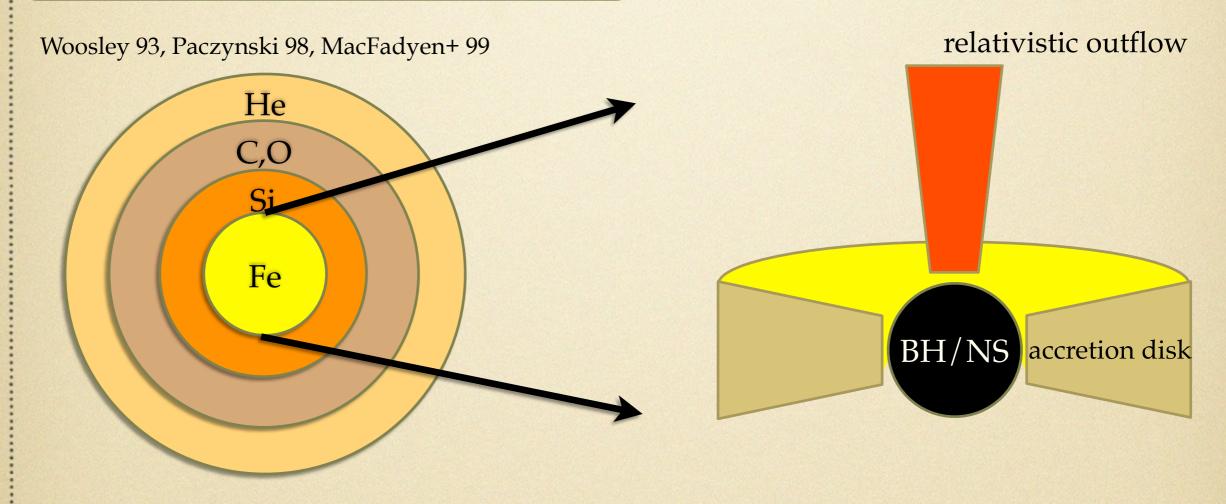
Gamma-ray bursts



- ➤ The most luminous explosions in the Universe
- ➤ Small amount of matter accelerated to ultrarelativistic speeds and collimated in a jet
- \succ In many of longer lasting events the total energy in γ rays ~ 10⁵¹ ergs.
- ➤The required energy for a jet: **E~10⁵² ergs**

GRBs and SNe

GRB ⇔ **SN** association

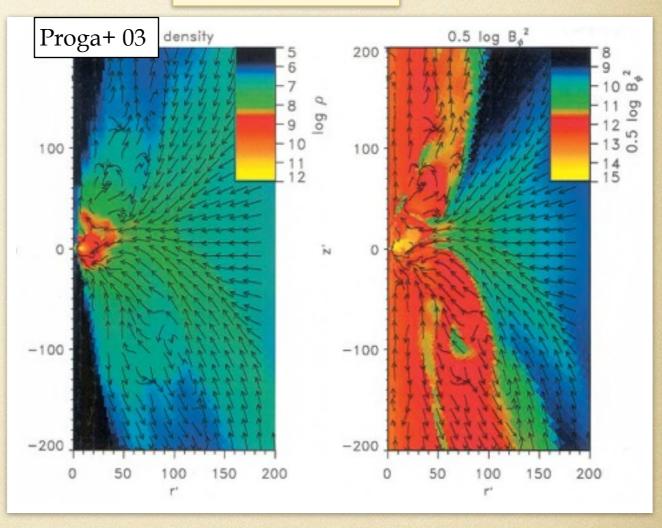

```
GRB 980425 / SN 1998bw: (z=0.0085)
GRB 030329 / SN 2003dh: (z=0.1687)
GRB 031203 / SN 2003lw: (z=0.1055)
XRF 060218 / SN 2006aj: (z=0.0335)
GRB 081007 / SN 2008hw: (z=0.53)
```


- Observations of GRB suggest that some GRBs are connected with some kind of SNe.
- SNe which associate with GRB are "Hypernovae" (HNe) with explosion energy, E_{exp}~10⁵² ergs.
- The central engine of GRBs is required to supply such an enormous explosion energy of GRBs/HNe.

Collapsar model

The most promising model of long GRBs

- Relativistic jet formation by some kind of "mechanism" GRB
- Candidates of "mechanism":


magnetic force and neutrino annihilation

Magneto-driven jet

Blandford-Znajek process

McKinney & Gammie 04

MHD process

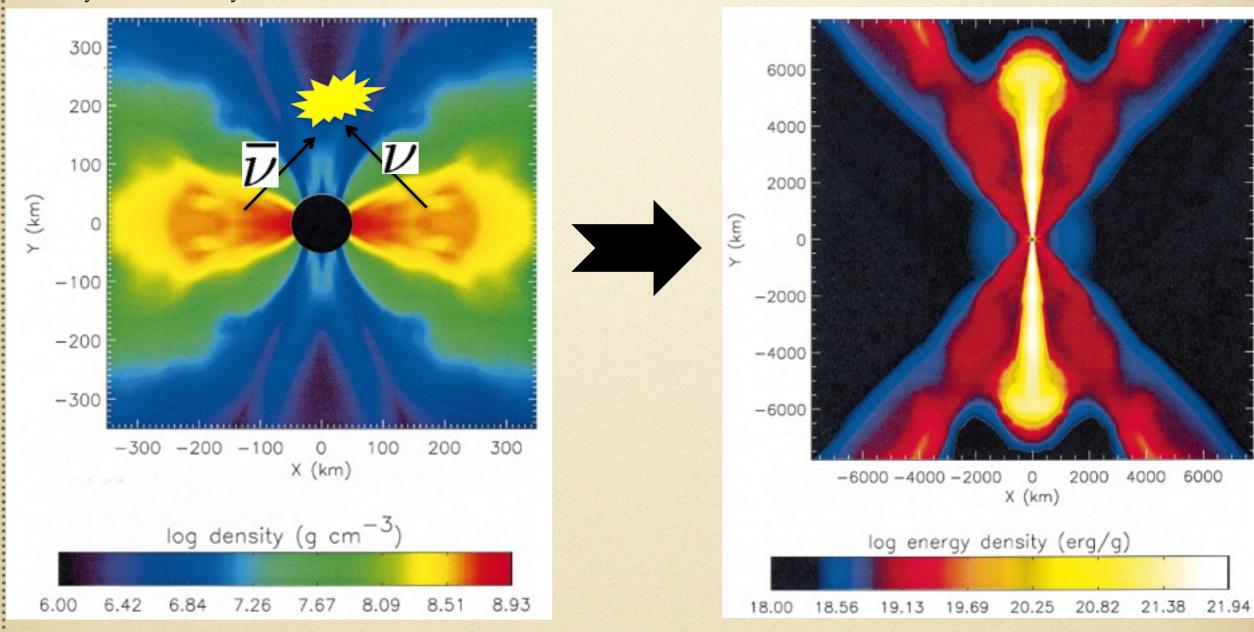
rotation energy of a BH
Poynting flux **jet production**

$$P_{\rm BZ} \sim 10^{51} ilde{a}^2 \left(rac{M_{
m BH}}{3 M_{\odot}}
ight)^2 \left(rac{B}{10^{15} {
m G}}
ight)^2 {
m ergs \ s}^{-1} \quad {
m Lee+00}$$
 $E_{
m rot} = 5.4 \times 10^{54} f(ilde{a}) \left(rac{M}{3 M_{\odot}}
ight) {
m ergs} \quad f(ilde{a}) = 1 - \sqrt{rac{1}{2} [1 + \sqrt{1 - ilde{a}^2}]}$

binding energy of an accretion disk

Poynting flux

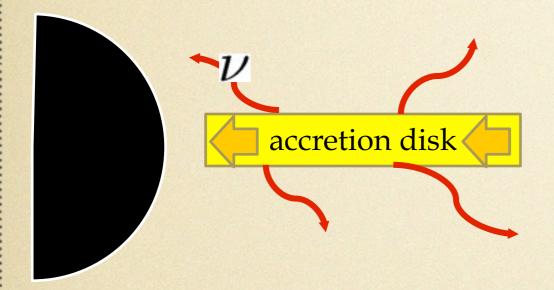
jet production

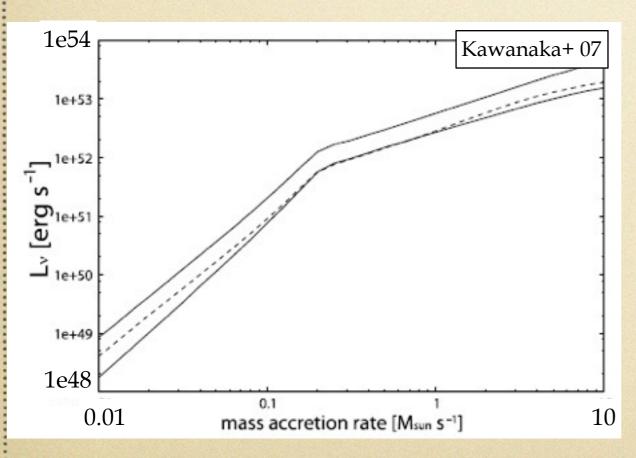

 $P_{\mathsf{MHD}} \sim P_{\mathsf{BZ}}$

2009/11/11

HEAP2009 @ KEK

Neutrino-driven jet


McFadyen & Woosley 99



Neutrino pairs are generated in the hot disk
The Impact each other Energy deposition at rotational axis
jet production

NDAF

Neutrino Dominated Accretion Flow

- Model for hyper accretion disk
- The neutrino emission is the dominant source of cooling.

(These neutrinos are suggested for the source of a jet)

Depending on the accretion rate, the neutrino luminosity, L, becomes as large as 10⁵³ erg/sec!

NDAF

Popham+ 99 TABLE 3
NEUTRINO ANNIHILATION EFFICIENCY

\dot{M} $(M_{\odot} \text{ s}^{-1})$	α	a	$M \choose (M_{\odot})$	L_{ν} (10 ⁵¹ ergs s ⁻¹)	$L_{v\bar{v}}$ (10 ⁵¹ ergs s ⁻¹)	Efficiency (%)
0.01	0.1	0	3	0.015	3.9×10^{-8}	0.0003
0.01	0.03	0	3	0.089	2.9×10^{-7}	0.0003
0.01	0.01	0	3	0.650	9.0×10^{-6}	0.001
0.01	0.1	0.5	3	0.036	5.9×10^{-7}	0.002
0.01	0.01	0	10	0.049	6.4×10^{-9}	10-5
0.05	0.1	0.5	3	1.65	1.8×10^{-3}	0.11
0.1	0.1	0	3	3.35	3.0×10^{-3}	0.09
0.1	0.03	0	3	6.96	1.7×10^{-3}	0.02
0.1	0.01	0	3	6.15	8.0×10^{-4}	0.01
0.1	0.1	0.5	3	8.03	0.039	0.5
0.1	0.1	0.95	3	46.4	2.0	4.2
0.1	0.1	0.95	6	26.2	0.79	3.0
1.0	0.1	0	3	86.3	0.56	0.6
1.0	0.1	0.5	3	142	3.5	2.5
10.0ª	0.1	0	3	(781)	(200)	(26)
10.0ª	0.1	0.5	3	(1280)	(820)	(64)

^{*} The assumption that the neutrinos are optically thin breaks down for accretion rates of 10 M_{\odot} s⁻¹ and above. The neutrino annihilation luminosities and energies listed for these high-accretion simulations are upper limits.

The required energy for producing GRB jet is ~ 10⁵¹ erg/sec.
In order to achieve this, the total neutrino luminosity must be as large as ~ 10⁵³ erg/sec!

(The efficiency of energy conversion is quite low.)

Summary of energy budget

Energy of GRB jet

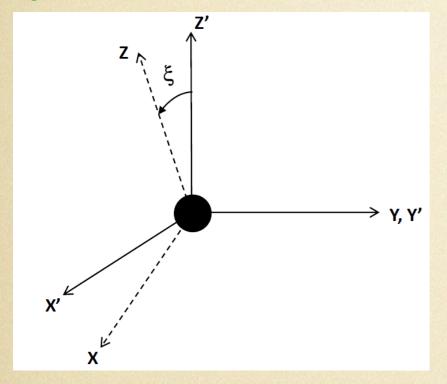
$$E_{\mathsf{GRB-jet}} = 10^{52} \mathsf{ergs}$$

Energy available by models of central engine

$$P_{\rm BZ} \sim 10^{51} \tilde{a}^2 \left(rac{M_{
m BH}}{3 M_{\odot}}
ight)^2 \left(rac{B}{10^{15} {
m G}}
ight)^2 {
m ergs \ s^{-1}}$$

$$P_{\mathsf{MHD}} \sim P_{\mathsf{BZ}}$$

$$P_{\nu\bar{\nu}} \sim 10^{51} {\rm ergs \ s^{-1}}$$



 $L_{
u} \sim 10^{53} \mathrm{ergs \ s^{-1}}$

Can we constrain this component using GW??

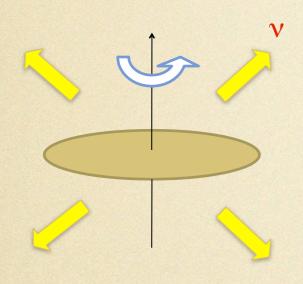
GW from anisotropic neutrino radiation

Epstein 78, Turner 78, Mueller & Janka 97

GW amplitude

$$h_+(t) = \frac{2G}{c^4 R} \int_{-\infty}^{t-R/c} dt' \int_{4\pi} d\Omega' \Psi(\Omega') \frac{dL_{\nu}}{d\Omega'}(\Omega', t')$$

neutrino luminosity per unit solid angle


$$\Psi(\Omega') = (1 + \cos\theta' \cos\xi + \sin\theta' \cos\phi' \sin\theta') \frac{(\sin\theta' \cos\phi' \cos\xi - \cos\theta' \sin\xi)^2 - \sin^2\theta' \sin^2\phi'}{(\sin\theta' \cos\phi' \cos\xi - \cos\theta' \sin\xi)^2 + \sin^2\theta' \sin^2\phi'}$$

Axisymmetric case

$$h_+(t) = \frac{2G}{c^4 R} \int_{-\infty}^{t-R/c} dt' \int_0^\pi \sin\theta' d\theta' \ \Phi(\theta') \frac{dL_{\nu}}{d\Omega'}(\theta',t'),$$

$$\Phi(\theta') = \begin{cases} -2\pi \left[1 + \cos\theta' \left(2 + \cos\xi\right)\right] \tan^2\left(\frac{\xi}{2}\right) & \text{(for } \theta \ge \xi) \\ -2\pi \left[1 + \cos\theta' \left(-2 + \cos\xi\right)\right] \cot^2\left(\frac{\xi}{2}\right) & \text{(for } \theta < \xi) \end{cases}$$

GW from thin disk

Neutrino emission

$$\frac{dL_{\nu}}{d\Omega'} = \frac{L_{\nu}}{2\pi} |\cos\theta|$$

GW amplitude ($\xi=\pi/2$)

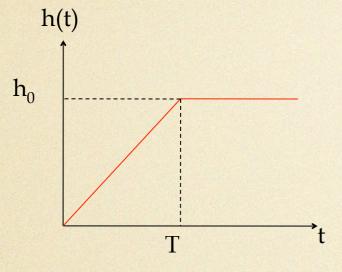
$$h_{+}(t) = \frac{2G}{c^{4}R} \int_{-\infty}^{t-R/c} dt' \int_{0}^{\pi} d\theta' \Phi(\theta') \frac{dL_{\nu}}{d\Omega'}(\theta', t')$$

$$= \frac{2G}{c^{4}R} \int_{-\infty}^{t-R/c} dt' L_{\nu}(t') \times \int_{0}^{\pi} d\theta' (-1 + 2\cos\theta') \sin\theta' |\cos\theta'|$$

$$= \frac{2G}{c^{4}R} \left(\frac{1}{3}\right) \int_{-\infty}^{t-R/c} L_{\nu}(t') dt'.$$

h(t) T

Final converged value

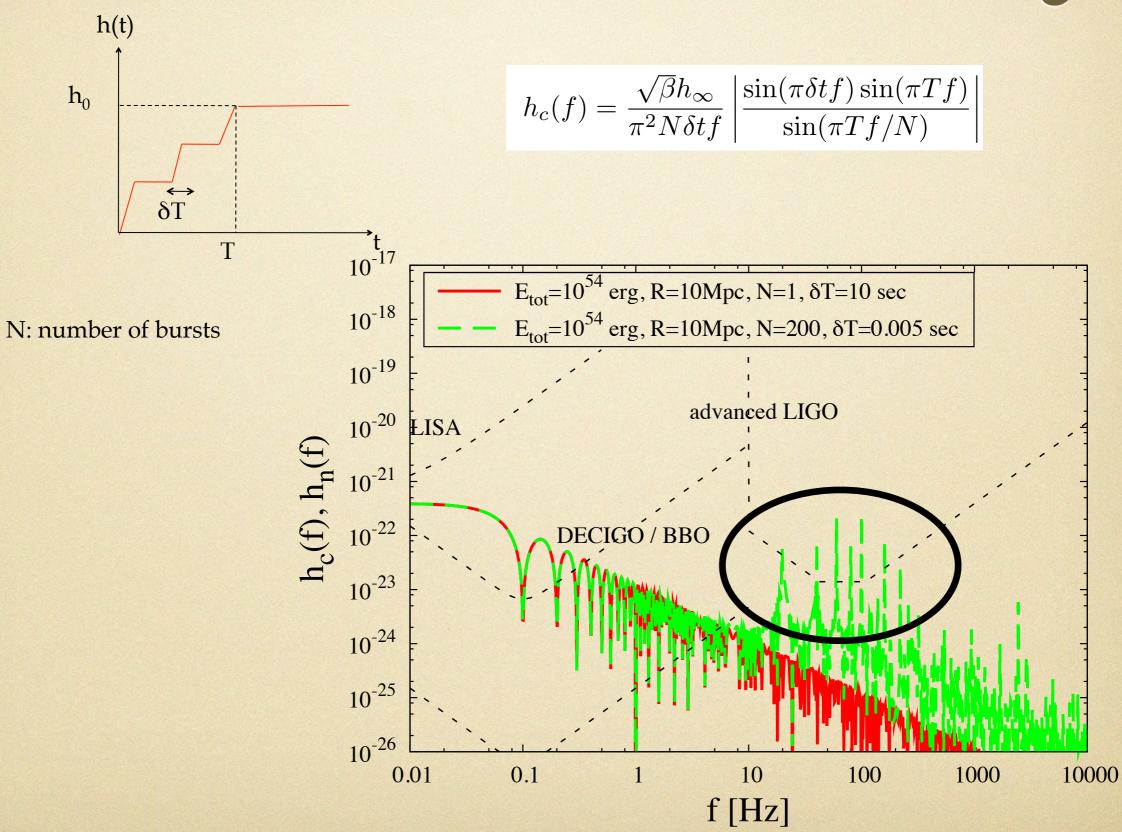

$$h_0 \sim 1.8 \times 10^{-21} \left(\frac{10 {
m Mpc}}{R} \right) \left(\frac{E_{
u}}{10^{54} {
m ergs}} \right) {
m R: distance} {
m E}_{
u}: {
m total energy emitted} {
m by neutrino}$$

 \Leftrightarrow E_{tot}=3x10⁵³ ergs for ordinary SNe

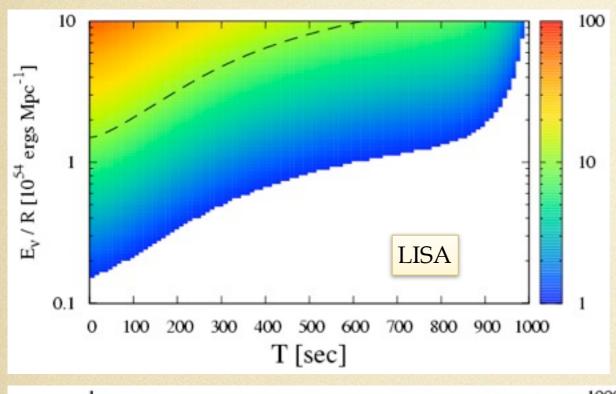
cf.) GW from jet itself

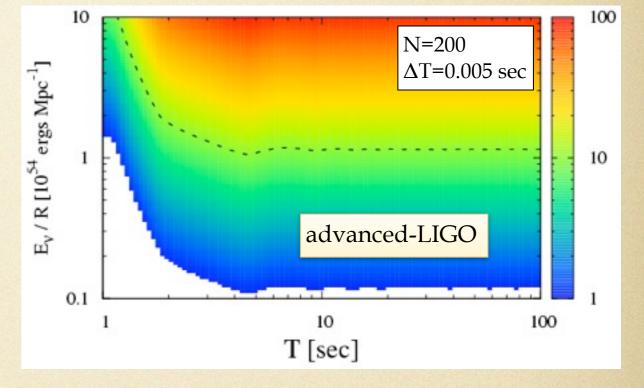
$$h_0 \sim 8.5 \times 10^{-24} \left(\frac{10 \mathrm{Mpc}}{R}\right) \left(\frac{E_{\mathrm{jet}}}{10^{52} \mathrm{ergs}}\right)$$
 Sago+ 04 Hiramatsu+ 05

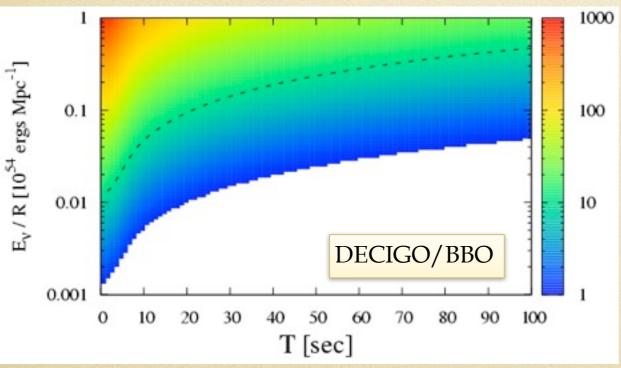
GW spctrum



$$h_c(f) \equiv f|\tilde{h}(f)| = \frac{h_0}{2\pi^2 T f} |\sin(\pi T f)|$$

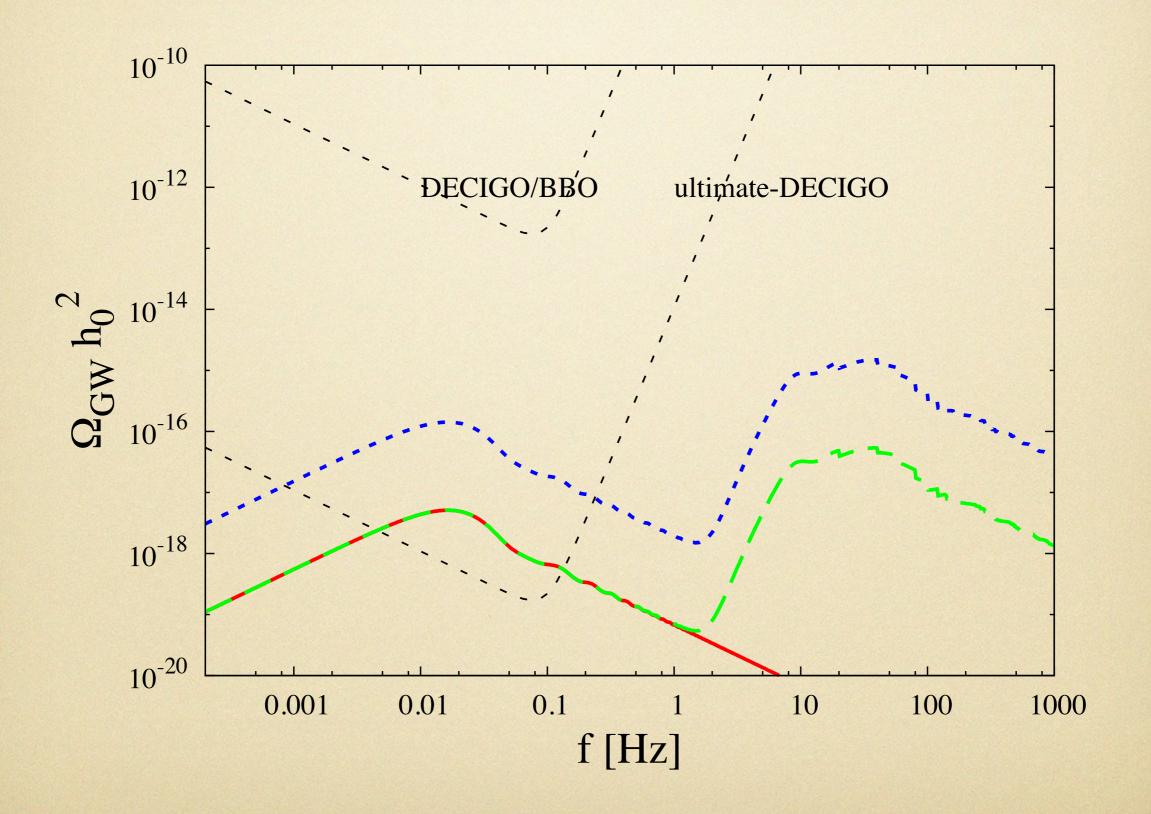



HEAP2009 @ KEK


Effect of time variability

Signal-to-noise ratio

$$SNR = \sqrt{\int_0^\infty d(\ln f) \frac{h_c(f)^2}{h_n(f)^2}}$$


SNR>10⇔

- < 1 Mpc for ad.-LIGO (2015)
- < 1 Mpc for LISA (2019)
- < 100 Mpc for DECIGO/BBO (2024)

cf.) GRB rate⇔

 $\sim 10 - \sim 1000 \text{ Gpc}^{-3} \text{ yr}^{-1} \text{ (Guetta+ 07)}$

Gravitational Wave Background

Summary

Energy of GRB jet

$$E_{\mathsf{GRB-jet}} = 10^{52} \mathsf{ergs}$$

Evergy available by models of central engine

BZ process
$$P_{\rm BZ} \sim 10^{51} \tilde{a}^2 \left(\frac{M_{\rm BH}}{3 M_{\odot}}\right)^2 \left(\frac{B}{10^{15} {\rm G}}\right)^2 {\rm ergs \ s^{-1}}$$

MHD process $P_{\text{MHD}} \sim P_{\text{BZ}}$

$$V ext{ process}$$
 $P_{\nu\bar{\nu}} \sim 10^{51} ext{ergs s}^{-1}$ $L_{\nu} \sim 10^{53} ext{ergs s}^{-1}$ GW