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1. Motivation



Nuclear force is a basis for understanding ...

Structure of ordinary and hyper nuclei

Structure of neutron star

Ignition of Type |l SuperNova




Phenomenological NN potential
(~40 parameters to fit 5000 phase shift data)

] One-pion exchange
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2. Strategy in (lattice) QCD
to extract “potential”

Challenge to Nambu’s statement

“Even now, it is impossible to completely describe nuclear forces beginning with a
fundamental equation.”
Y. Nambu, “Quarks: Frontiers in Elementary Partcile Physics”, World Scientific (1985)




Quantum Field Theoretical consideration

e S-matrix below inelastic threshold. Unitarity gives
g — €2i5
e Nambu-Bethe-Salpeter (NBS) Wave function
op(r) = (0|N(x+r,0)N(x,0)|6q, E)

6 quark QCD eigen-state with energy E
N(z) = eapeq®(x)q°(x)q¢(z): local operator

Asymptotic behavior r=|r| — oo

sin(kr —In/2 4 0;(k)) L
kr - 2uy My

» 0;(k) is the scattering phase shift

wE(r) — A

partial wave




We define the potential as

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

Velocity expansion

no interaction

interaction
range

Ux,y) =V(x,V)§*(x —y)

Okubo-Marshak (1958)

V(x,V) =Vo(r) + Vo(r)(o1 - o2) + Vr(r)Si2 + Vis(r)L - S + O(V?)

NLO NNLO

LO

tensor operator

We calculate observables: phase shift, binding energy etc.
using this approximated potential.




‘(quenched) potentials I

LO (effective) central Potential Vi(rst So) = VI () + vI=D ()
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Qualitative features of NN potential are reproduced !

Ishii-Aoki-Hatsuda, PRL90(2007)0022001 This paper has been selected as one of 21 papers in
Nature Research Highlights 2007




3. Inelastic scattering:

octet baryon interactions




3-1. Baryon-Baryon interactions in an SU(3) symmetric world
My = Mg = Mg

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)

8><8—27—I—85—I—1—I—10*—|-10+8a

Symmetric Anti-symmetric
6 independent potential in flavor-basis
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Potentials
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27, 10*: same as before, NN channel
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8s, 10: strong repulsive core




iﬁn:iOlél' MeV —— i
my=835 MeV +=---x--- ]

- WNWWWMW*W* 1: no repulsive core, attractive core !
No quark mass dependence
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* Bound state in 1(singlet) channel ?
H-dibaryon ?

(&)
o

o

However, it is difficult to determine E
precisely, due to contaminations from
excited states.

Log[R(t)/R(t+1)] [MeV]
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Schroedinger eq. predicts a bound state
Singlet potential with a certain value of E * at E < -30 ?\/Ievq P
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3-2. Proposal for S=-2 In-elastic scattering
my = 939 MeV, mp = 1116 MeV, my, = 1193 MeV, mz== 1318 MeV

S=-2 System(I=0)
Maan = 2232 MeV < My= = 2257 MeV < Mysw= 2386 MeV

The eigen-state of QCD in the finite box is a mixture of them:

‘S — _27] — O7E>L — Cl(L)‘AA7E> T CQ(L)‘ENa E> T CB(L)|227E>

E:2\/m?\+p%:\/m%—kp%—l—\/m?\,—l—p%:Z\/m%—l—p%

In this situation, we can not directly extract the scattering phase shift
in lattice QCD.




HAL’s proposal

Let us consider 2-channel problem for simplicity.

NBS wave functions for 2 channels at 2 values of energy:

a=1,2




We define the “potential” from the coupled channel Schroedinger
equation:

(X) _ VAA<—AA (X)\PQA (X) + VAA<—EN (X)\IJEN (X)

diagonal off-diagonal

N(X) _ VEN<—AA (X)\IJQA (X) + VEN<—EN (X)\I/EN (X)

«

off-diagonal diagonal

1: reduced mass

( XX ( ) ( (By — H )T (x) )

VAT (B2 — Hg' ) P35 (x)

» _ Pa 4
X£Y  X,Y=AAorEN Y 2uan’ 2pEN

a=1,2




Using the potentials: VAA=AN ()
VAA<—E (X)

we solve the coupled channel Schroedinger equation in the infinite
volume with an appropriate boundary condition.

For example, we take the incomming AA state by hand.

(1 7

In this way, we can avoid the mixture of several “in”-states.

S =-2T=0,E) =ci(L)|AA, E) + co(L)|EN, E) + c3(L)|%, E)

Lattice is a tool to extract the interaction kernel (“T-matrix” or “potential”).




2+1 flavor full QCD

a=0.1 fm, L=2.9 fm

e 570 vy LDiagonal part of potential matrix|

Preliminary results from HAL QCD Collaboration

Sasaki for HAL QCD Collaboration




Va_p=Vp_a

Hermiticity ! (non-trivial check)




3-3. H-dibaryon

. S=-2 singlet state may become the bound state in flavor SU(3)
limit.

. In the real world (s is heavier than u,d), some resonance may
appear above AA but below =N threshold.

. Trial demonstration:

3.1. Use potential in SU(3) limit

3.2. Introduce only mass difference from 2+1 simulation

Inoue for HAL QCD Collaboration




Potentials in particle basis in SU(3) limit
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where T\"=-25 T®»=25 T”=—5 [MeV] are used




= 2,1 =0,1S, scattering “2+1 flavor”
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Phase-shift §-0 (Stapp)

Phase-shift 50 (Stapp)

(0]
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Phase-shift § [Deg]
Phase-shift 6 [Deg]

“2+1 flavor” resonance Nno resonance

SU(3) limit bound state no bound state




4. New method for hadron

interactions in lattice QCD




Inelastic scattering Il: particle production

EZEthIQmN+mW
elastic scattering NN «— NN
. Bp . E.+E,T(p,—p—k, -k
pr(r) = e"k'r+/ pezp'r v+ Ep T(p, —p — : )
(27)3 SE2 p? — k? —ie
+ I(r)

inelastic contribution  NNm «— NN X eiq-r la| = O(E — Ey)

NBS wave function

Consider additional NBS wave function

erp.(r,y) = (0|N(r+x,0)r(y +x,0)N(x,0)|6q, E)

Note that

6, E) = c1|[NN, E)in + co| NN7, E)ipy + -




Coupled channel equations

(E - Ho)pn(x) = / By Ui (% y)os(y) + / Py Uss(x;y,2) 0.0 (y,2)

(E - HO)SOE,W(X Y> /d3 U21<X Y. Z )QOE( ) /d32d3w U22(X7y;zaw)§0E,7r(Z7W)
* Velocity expansion at LO, two values of E
1 =1,2
Vi1(x)pg, (x) + Vi2 (X, X) 9, (X, X)
V21 (X7 Y)SOEz (X) -+ V22 (X7 Y)SOEz'ﬂT(XJ Y)

Vi1(x) : NN «— NN Vig(x,x): NN «— NN
Vor1(x,y) : NN7m— NN Vao(x,y): NNm+— NN

Solve Schroedinger equation with these potentials and a specific B.C.




General prescription

Consider a QCD eiegnstate with given quantum numbers Q and
energy E.

Take all possible combinations with Q of stable particles whose
threshold is below or near E.

ex. Q =6g: NN, NNn,NNar, NNKTK~ NNNN,---

Calculate NBS wave functions for all combinations.

Extract coupled-channel potentials in a finite volume.

Solve Schroedinger equation with these potentials in the infinite
volume with a suitable B.C. to obtain physical observables.

In practice, of course, final states more than 2 particles are very difficult to deal with.




5. Summary



Summary

e Potentials from NBS wave function are useful tools to extract
hadron interactions in lattice QCD. Finite size effect is smaller and
quark mass dependence is milder than the phase shift.

e (Combined with Schroedinger equation in the infinite box.
Rotational symmetry is recovered.

® |nelastic scattering can also be analysed in terms of coupled
channel “potentials”.

® AN scattering, H-dibaryon as a resonance

e unstabel particle as a resonace
e p meson, A, Roper etc.
® exotic: penta-quark, X, Y etc.

e 3-Baryon forces : NNN (Doi) , BBB-> Neutron star

e \Weak decay ?




Definition of “Potential” in (lattice) QCD ?

Previous attempt Takahashi-Doi-Suganuma, AIP Conf.Proc. 842,249(2006)

calculate energy of Qqq +Qqq as a function of r between 2Q.
Q:static quark, q: light quark

Qqq qqQ Qqq qqQ Qqq qqQ Qqq 9qqQ

[T TAT T

Quenched result (a) (b) (©) (d)

(x=0.1650) (x=0.1650) (k=0.1650)
0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Almost no dependence on r!

cf. Recent successful result in the strong coupling limit
(deForcrand-Fromm, PRL104(2010)112005)




Frequently Asked Questions

[Q1] Operator dependence of the potential
[Q2] Energy dependence of the potential

[A1] choice of operator = scheme, cf. running coupling
(N(x), U(x,y) ) is a combination to define ovservables
QM: (®, U) — observables
QFT: (asymptotic field, vertices) — observables
EFT: (choice of field, vertices) — observables

* local operator = convenient choice for reduction formula

[A2] U(x,y) is E-independent by construction
 non-locality can be determined order by order in velocity expansion ( cf. ChPT)

Non-local, E-independent 0 Local, E-dependent

VE(X)pr(x) = (E + %) PE(X)




‘ Validity of the velocity expansion of U I

(F — Ho)pp(x)
e (x)

E-dependent <«  Non-locality

From E-dependence, one may determine higher order terms:

Leading Order Vg (r) =

Local potential approximation

V(Xv V) — VC(T) + VT(T)Slz + VLs(T)L - S + {VD(T), VQ} + ..

[Numerical check in quenched QCDJ mx =~ 0.53 GeV
a=0.137fm

K. Murano, N. Ishii, S. Aoki, T. Hatsuda

PoS Lattice2009 (2009)126.
Anti-Periodic B.C.




e PBC (E~0MeV) e APBC (E~46 MeV)

BS wave function ——— APBC BS wave function
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Vc(r:'SO):PBC v.s. APBC {=9 (x=+-5 or y=+-5 or z=+-5)
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E-dependence of the local potential
turns out to be very small at low
energy in our choice of wave function.

Quenched QCD
my. >~ 0.53 GeV
a=0.137fm

I
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nT 7w~ scattering ( p meson width)

Finite volume method ETMC: Feng-Jansen-Renner, PLB684(2010)
1 I | I | | —_ ' | ' |
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