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1. Motivation



Nuclear force is a basis for understanding ...

• Structure of ordinary and hyper nuclei

• Structure of neutron star 

• Ignition of Type II SuperNova

Λ

Nuclear Forces from Lattice QCD

Chiral  Dynamics 09,  Bern, July 7, 2009

S. Aoki, T. Doi,  T. Inoue,  K. Murano, K. Sasaki  (Univ. Tsukuba)

T. Hatsuda, Y. Ikeda, N. Ishii (Univ. Tokyo)
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HAL QCD Collaboration
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Phenomenological NN potential
(~40 parameters to fit 5000 phase shift data)
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2. Strategy in (lattice) QCD 
to extract “potential”

Challenge to Nambu’s statement 

“Even now, it is impossible to completely describe nuclear forces beginning with a 
fundamental equation.”
Y. Nambu, “Quarks: Frontiers in Elementary Partcile Physics”, World Scientific (1985)



• S-matrix below inelastic threshold.  Unitarity gives

• Nambu-Bethe-Salpeter (NBS) Wave function

ϕE(r) = �0|N(x + r, 0)N(x, 0)|6q, E�
6 quark QCD eigen-state with energy E

N(x) = εabcqa(x)qb(x)qc(x): local operator

Asymptotic behavior

S = e2iδ

ϕl
E(r) −→ Al

sin(kr − lπ/2 + δl(k))
kr

r = |r|→∞

E =
k2

2µN
=

k2

mN

partial wave

δl(k) is the scattering phase shift

Quantum Field Theoretical consideration



We define the potential as

[εk − H0]ϕE(x) =
∫

d3y U(x,y)ϕE(y)

εk =
k2

2µ
H0 =

−∇2

2µ

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

Velocity expansion U(x,y) = V (x,∇)δ3(x− y)

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)

LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)
spins

Okubo-Marshak (1958)

We calculate observables: phase shift, binding energy etc.
using this approximated potential.

no interaction

interaction
 range



mπ ! 0.53 GeV

Ishii-Aoki-Hatsuda, PRL90(2007)0022001

E � 0

Qualitative features of NN potential are reproduced !

Central potential Vc(r) from !"(r) at E ~ 0
(m#"=0.53 GeV)   

1S0  ,3S1 

Equal-time BS amplitude

Central potential

(quenched) potentials

LO (effective) central Potential

a=0.137 fm L=4.4fm

V (r;1 S0) = V (I=1)
0 (r) + V (I=1)

σ (r)

V (r;3 S1) = V (I=0)
0 (r) − 3V (I=0)

σ (r)

This paper has been selected as one of 21 papers in
Nature Research Highlights 2007 



3. Inelastic scattering:
octet baryon interactions

 



3-1. Baryon-Baryon interactions in an SU(3) symmetric world

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)
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2. Origin of the repulsive core (universal or not) 

6 independent potential in flavor-basis
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mu = md = ms
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Potentials

27, 10*: same as before, NN channel 8s, 10: strong repulsive core

Inoue for HAL QCD Collaboration
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No quark mass dependence

8a: week repulsive core, 
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Bound state in 1(singlet) channel ? 
H-dibaryon ?

However, it is difficult to determine E 
precisely, due to contaminations from 
excited states.

Singlet potential with a certain value of E
Schroedinger eq. predicts a bound state 
at E < -30 MeV
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Finite size effect is very large
 on this volume.
(consistent with previous results.)

larger volume calculations are in progress.



  3-2. Proposal for S=-2 In-elastic scattering

mN = 939 MeV, mΛ = 1116 MeV, mΣ = 1193 MeV, mΞ= 1318 MeV

S=-2 System(I=0)

MΛΛ = 2232 MeV < MNΞ = 2257 MeV < MΣΣ= 2386 MeV

The eigen-state of QCD in the finite box is a mixture of them: 

E = 2
√

m2
Λ + p2

1 =
√

m2
Ξ + p2

2 +
√

m2
N + p2

2 = 2
√

m2
Σ + p2

3

In this situation, we can not directly extract the scattering phase shift 
in lattice QCD.

|S = −2, I = 0, E〉L = c1(L)|ΛΛ, E〉 + c2(L)|ΞN, E〉 + c3(L)|ΣΣ, E〉



  HAL’s proposal 
Let us consider 2-channel problem for simplicity.

NBS wave functions for 2 channels at 2 values of energy:

ΨΞN
α (x) = 〈0|Ξ(x)N(0)|Eα〉

ΨΛΛ
α (x) = 〈0|Λ(x)Λ(0)|Eα〉 α = 1, 2

They satisfy

(∇2 + p2
α)ΨΛΛ

α (x) = 0

(∇2 + q2
α)ΨΞN

α (x) = 0
|x| → ∞



We define the “potential” from the coupled channel Schroedinger 
equation:
(

∇2

2µΛΛ
+

p2
α

2µΛΛ

)
ΨΛΛ

α (x) = V ΛΛ←ΛΛ(x)ΨΛΛ
α (x) + V ΛΛ←ΞN (x)ΨΞN

α (x)

(
∇2

2µΞN
+

q2
α

2µΞN

)
ΨΞN

α (x) = V ΞN←ΛΛ(x)ΨΛΛ
α (x) + V ΞN←ΞN (x)ΨΞN

α (x)

µ: reduced mass

X, Y = ΛΛ or ΞN

(
V X←X(x)
V X←Y (x)

)
=

(
ΨX

1 (x) ΨY
1 (x)

ΨX
2 (x) ΨY

2 (x)

)−1 (
(E1 − HX

0 )ΨX
1 (x)

(E2 − HX
0 )ΨX

2 (x)

)

X != Y

diagonal off-diagonal

diagonaloff-diagonal

Eα =
p2

α

2µΛΛ
,

q2
α

2µΞN

α = 1, 2



Using the potentials:
(

V ΛΛ←ΛΛ(x) V ΞN←ΛΛ(x)
V ΛΛ←ΞN (x) V ΞN←ΞN (x)

)

we solve the coupled channel Schroedinger equation in the infinite 
volume with an appropriate boundary condition.

For example, we take the incomming ΛΛ state by hand.

In this way, we can avoid the mixture of several “in”-states.

Lattice is a tool to extract the interaction kernel (“T-matrix” or “potential”).

|S = −2, I = 0, E〉L = c1(L)|ΛΛ, E〉 + c2(L)|ΞN, E〉 + c3(L)|ΣΣ, E〉



  Preliminary results from HAL QCD Collaboration

Sasaki for HAL QCD Collaboration2+1 flavor full QCD

Diagonal part of potential matrix
a=0.1 fm, L=2.9 fm

mπ � 870 MeV



Non-diagonal part of potential matrix

VA−B ! VB−A

Hermiticity ! (non-trivial check)



  3-3. H-dibaryon
1. S=-2 singlet state may become the bound state in flavor SU(3) 

limit.

2. In the real world (s is heavier than u,d), some resonance may 
appear above ΛΛ but below ΞN threshold.

3. Trial demonstration:

3.1. Use potential in SU(3) limit

3.2. Introduce only mass difference from 2+1 simulation

Inoue for HAL QCD Collaboration
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“2+1 flavor”

! ! !
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4. New method for hadron 
interactions in lattice QCD 



Inelastic scattering II: particle production

ϕE(r) = eik·r +
∫

d3p

(2π)3
eip·r Ek + Ep

8E2
p

T (p,−p ← k,−k)
p2 − k2 − iε

+ I(r)

NBS wave function elastic scattering

inelastic contribution 

NN ← NN

NNπ ← NN ∝ eiq·r

E ≥ Eth = 2mN + mπ

|q| = O(E − Eth)

Consider additional NBS wave function

ϕE,π(r,y) = 〈0|N(r + x, 0)π(y + x, 0)N(x, 0)|6q, E〉

Note that

|6q, E〉 = c1|NN, E〉in + c2|NNπ, E〉in + · · ·



Coupled channel equations

(E − H0)ϕE(x) =
∫

d3y U11(x;y)ϕE(y) +
∫

d3yd3z U12(x;y, z)ϕE,π(y, z)

(E − H0)ϕE,π(x,y) =
∫

d3z U21(x,y; z)ϕE(z) +
∫

d3zd3w U22(x,y; z,w)ϕE,π(z,w)

Velocity expansion at LO, two values of E

(Ei − H0)ϕEi(x) = V11(x)ϕEi(x) + V12(x,x)ϕEi,π(x,x)
(Ei − H0)ϕEi,π(x,y) = V21(x,y)ϕEi(x) + V22(x,y)ϕEi,π(x,y)

i = 1, 2

V11(x) : NN ← NN

V21(x,y) : NNπ ← NN V22(x,y) : NNπ ← NNπ

V12(x,x) : NN ← NNπ

Solve Schroedinger equation with these potentials and a specific B.C. 



General prescription

• Consider a QCD eiegnstate with given quantum numbers Q and 
energy E.

• Take all possible combinations with Q of stable particles whose 
threshold is below or near E.

• Calculate NBS wave functions for all combinations.

• Extract coupled-channel potentials in a finite volume.

• Solve Schroedinger equation with these potentials in the infinite 
volume with a suitable B.C. to obtain physical observables.  

ex. Q = 6q : NN, NNπ, NNππ, NNK+K−, NNN̄N, · · ·

In practice, of course, final states more than 2 particles are very difficult to deal with.



5. Summary 



• Potentials from NBS wave function are useful tools to extract 
hadron interactions in lattice QCD. Finite size effect is smaller and 
quark mass dependence is milder than the phase shift.

• Combined with Schroedinger equation in the infinite box. 
Rotational symmetry is recovered.

• Inelastic scattering can also be analysed in terms of coupled 
channel “potentials”. 

• ΛΛ scattering, H-dibaryon as a resonance 

Summary

• unstabel particle as a resonace

• ρ meson,  Δ, Roper etc.

• exotic: penta-quark, X, Y etc.

• 3-Baryon forces : NNN (Doi) , BBB-> Neutron star

• Weak decay ?



Definition of “Potential” in (lattice) QCD ?

Takahashi-Doi-Suganuma, AIP Conf.Proc. 842,249(2006)

difficult. Instead, we study the static inter-baryon potential in lattice QCD. To fix

the center of mass of each baryon, we use “heavy-light-light” quark system. Here,

the heavy quark is treated as a static one with infinite mass. Then, the inter-baryon

distance can be clearly defined as the relative distance between two heavy (static)

quarks. For the interpolating field of this heavy-light-light quark baryon, we employ

N(!r, t) ≡ !abcQ
a(!r, t)

[

tqb1(!r, t)C"5q
c
2(!r, t)

]

, with Qa(!r, t) the field for a static quark lo-
cated at (!r, t) and qai (!r, t) the light-quark field. The inter-baryon potential VBB(r) as a
function of the relative distance r ≡ |!r| can be extracted from the temporal correlators,
CBB(!r,T)≡ 〈[N(!0,T )N(!r,T)][N̄(!0,0)N̄(!r,0)]〉, and its limit as limT→#−

1
T
lnCBB(!r,T ).

The correlators can be expressed as the sum of the products of six quark propagators

via the Wick contraction of the quark fields. In particular, the propagator for the static
quarks is expressed as the path-ordered product of the gauge field Pexp(ig

∫

A0(x)dt),
which corresponds to the leading-order propagator in the heavy quark approximation.

As for the light quarks, the flavor content can be controlled by selecting “Feynman

Qqq qqQ

(a)

Qqq qqQ

(b)

Qqq qqQ

(d)

Qqq qqQ

(c)

FIGURE 1. Schematic figures of the Wick contraction.

diagrams”. For example, in the case when all the quarks have different flavors, we omit

the quark-exchange diagrams. (We need only (a) in Fig. 1.) If some pairs of quarks are

identical, we include the corresponding exchange diagram of the two quarks ((b)-(d) in

Fig. 1). In such a way, we can control the flavor content, which is directly connected to

the Pauli-blocking effects among quarks.

Note here that one of quarks is static and even the “light” quarks are rather heavy

as mcurrentu,d & 100 ∼ 250 MeV, which would weaken the Pauli-blocking effects and the

spin-spin interactions proportional to 1/m2const, with mconst the constituent quark mass.
However, taking into account that the short-range interactions between two nucleons are

quite strong, the present setup would be enough to single out the essence of the repulsive

core in the nuclear force.
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FIGURE 2. The inter-baryon potentialVBB(r)−2VB in lattice QCD. Left:All the light-quark flavors are
different. Middle:One pair of quark flavors are identical. Right:Two pairs of quark flavors are identical.

The horizontal axis denotes the inter-baryon distance r.
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identical, we include the corresponding exchange diagram of the two quarks ((b)-(d) in

Fig. 1). In such a way, we can control the flavor content, which is directly connected to

the Pauli-blocking effects among quarks.

Note here that one of quarks is static and even the “light” quarks are rather heavy

as mcurrentu,d & 100 ∼ 250 MeV, which would weaken the Pauli-blocking effects and the

spin-spin interactions proportional to 1/m2const, with mconst the constituent quark mass.
However, taking into account that the short-range interactions between two nucleons are

quite strong, the present setup would be enough to single out the essence of the repulsive

core in the nuclear force.
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The horizontal axis denotes the inter-baryon distance r.

Quenched result

(a)
+(b)+(c)

all

Almost no dependence on r !

Previous attempt

cf. Recent successful result in the strong coupling limit 
(deForcrand-Fromm, PRL104(2010)112005)



Frequently Asked Questions

[Q1] Operator dependence of the potential
[Q2] Energy dependence of the potential

[A1] choice of operator = scheme,  cf. running coupling 
       (N(x), U(x,y) ) is a combination to define ovservables

 QM: (Φ, U) → observables
 QFT: (asymptotic field, vertices) → observables
 EFT: (choice of field, vertices) → observables
• local operator = convenient choice for reduction formula 

[A2] U(x,y) is E-independent by construction
    • non-locality can be determined order by order in velocity expansion  ( cf. ChPT)

VE(x)ϕE(x) =
(

E +
∇2

2m

)
ϕE(x)

(
E +

∇2

2m

)
ϕE(x) =

∫
d3y U(x,y)ϕE(y)

Non-local, E-independent Local, E-dependent



Validity of the velocity expansion of  U

Leading Order VC(r) =
(E −H0)ϕE(x)

ϕE(x)
Local potential approximation 

From E-dependence, one may determine higher order terms:

V (x,∇) = VC(r) + VT (r)S12 + VLS(r)L · S + {VD(r),∇2} + · · ·

K. Murano, N. Ishii, S. Aoki, T. Hatsuda 

mπ ! 0.53 GeVNumerical check in quenched QCD
a=0.137fm

Anti-Periodic B.C.

PoS Lattice2009 (2009)126.

Non-localityE-dependent



●     PBC    (E～0 MeV)         　                     ●　APBC  (E～46 MeV)



E-dependence of the local potential 
turns out to be very small at low 
energy in our choice of wave function.

mπ ! 0.53 GeV
a=0.137fm

Quenched QCD
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ρ-meson width

ETMC NF = 2, Xu Feng, K. Jansen and D. B. Renner, PLB684 (2010), arXiv:0910.4871 & Lattice 2010

Consider π+π− in the I = 1-channel

Estimate P-wave scattering phase shift δ11(k) using finite size methods

Use Lüscher’s relation between energy in a finite box and the phase in infinite volume

Use Center of Mass frame and Moving frame

Use effective range formula: tanδ11(k) =
g2
ρππ
6π

k3

E
“

m2
R−E2

” , k =
p

E2/4− m2
π → determine MR and

gρππ and then extract Γρ =
g2
ρππ
6π

k3

R
m2

R
, kR =

q
m2

R/4− m2
π

mπ = 309 MeV, L = 2.8 fm
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C. Alexandrou (Univ. of Cyprus & Cyprus Institute) Nucleon structure in lattice QCD ICHEP-2010-Paris 4 / 38

π+π− scattering ( ρ meson width)

ETMC: Feng-Jansen-Renner, PLB684(2010)Finite volume method

ϕE(x) = 〈0|π(x, 0)π(0, 0)|ρ, E〉 V (x) sin2 δ(s)?


