

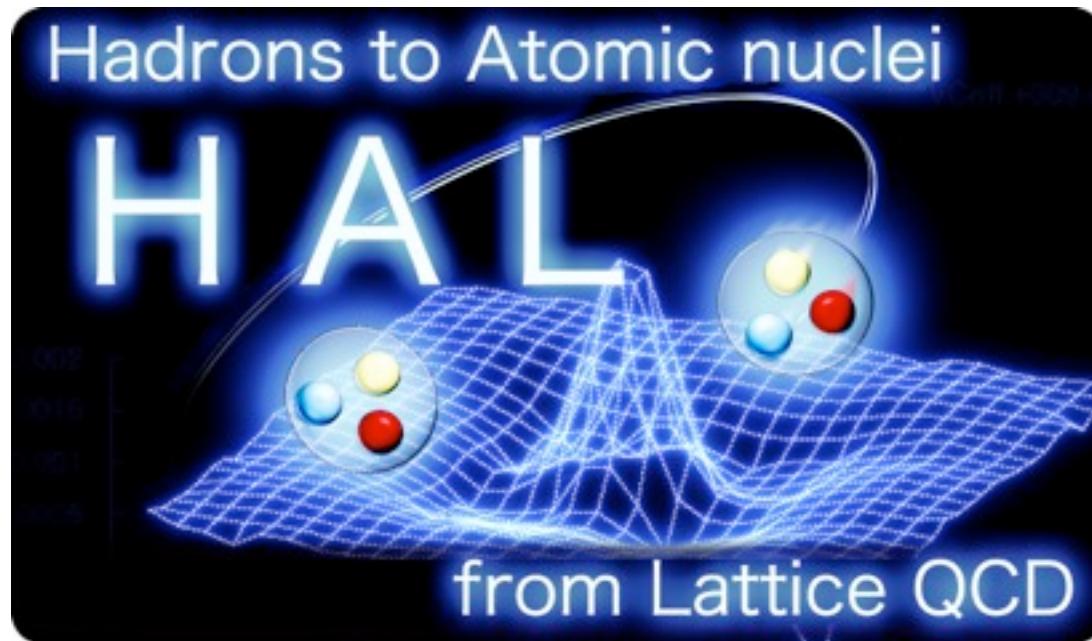
Extraction of hadron interactions from Lattice QCD

Sinya AOKI
University of Tsukuba



Lattice QCD confronts experiments
- Japanese-German Seminar 2010 -
4 - 6 November 2010, Mishima, Japan

HAL QCD Collaboration

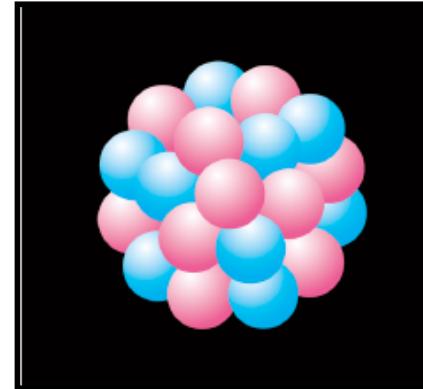
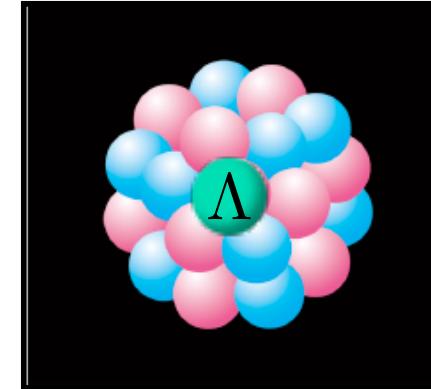


S. Aoki (Tsukuba)
T. Doi (Tsukuba)
T. Hatsuda (Tokyo)
Y. Ikeda (Riken)
T. Inoue (Nihon)
N. Ishii (Tokyo)
K. Murano (KEK)
H. Nemura (Tohoku)
K. Sasaki (Tsukuba)

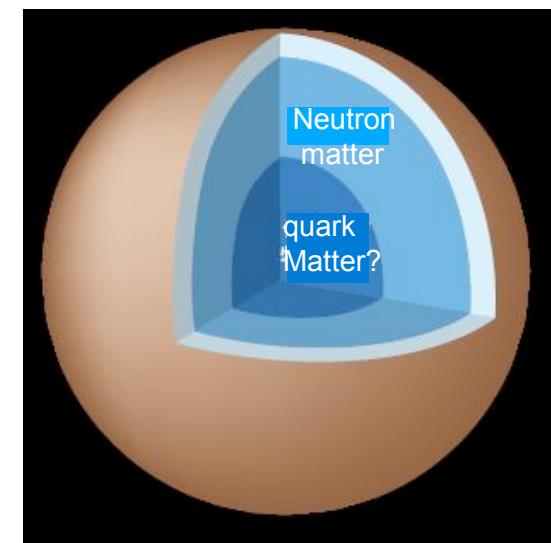
1. Motivation

Nuclear force is a basis for understanding ...

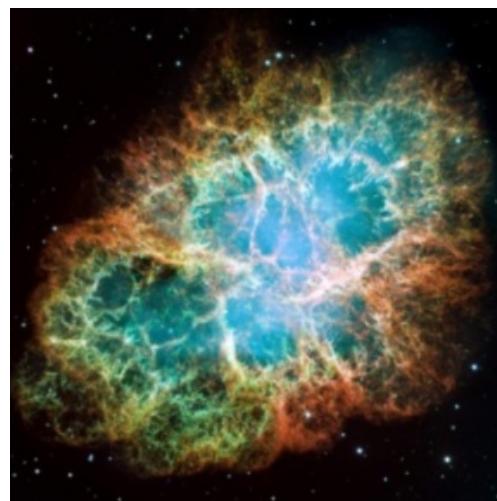
- Structure of ordinary and hyper nuclei



- Structure of neutron star

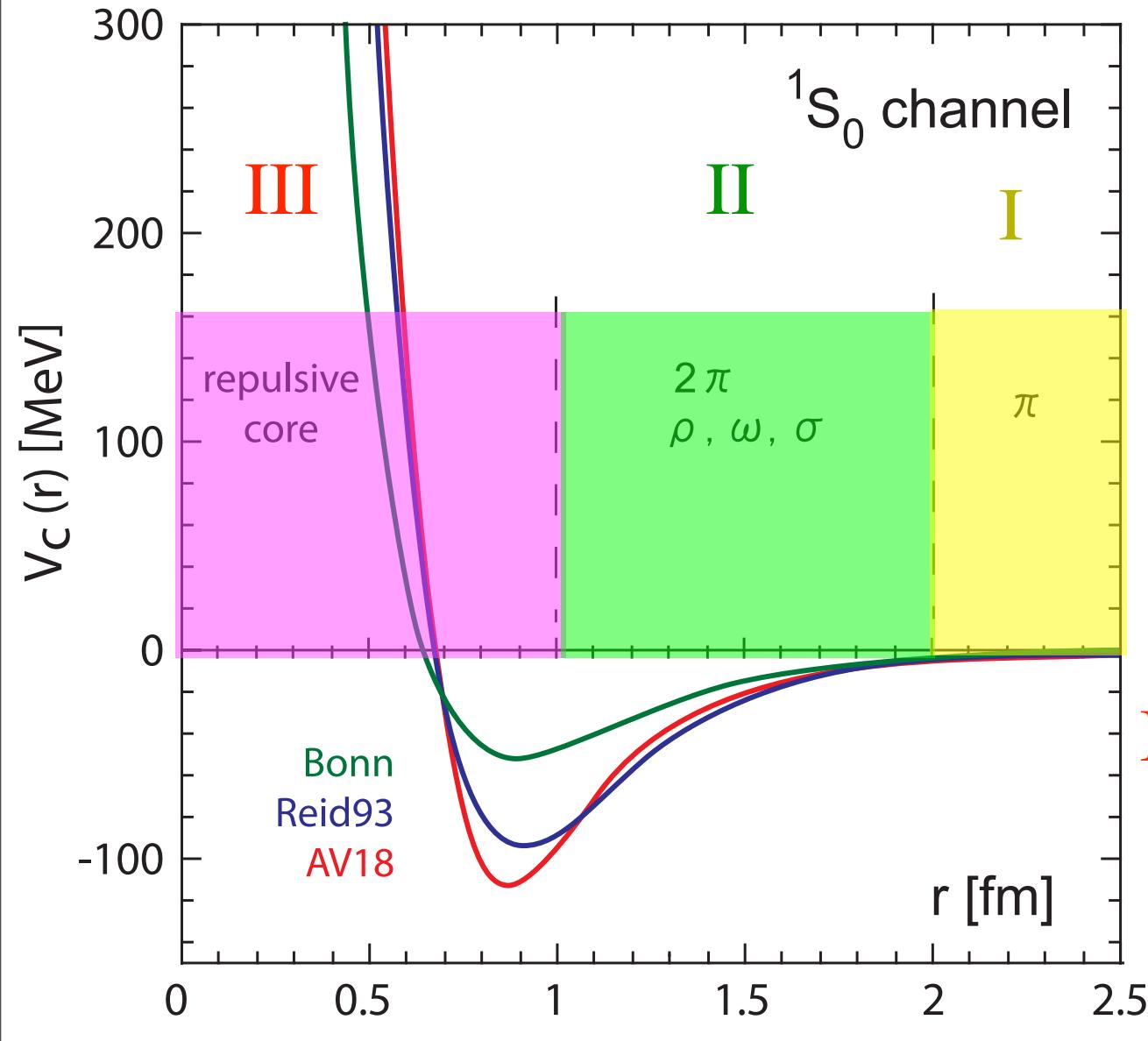


- Ignition of Type II SuperNova



Phenomenological NN potential

(~40 parameters to fit 5000 phase shift data)



I One-pion exchange

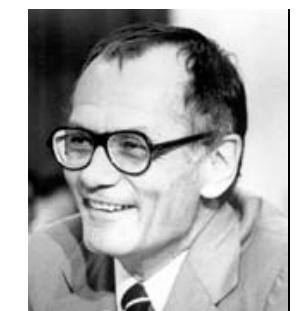
Yiukawa(1935)

II Multi-pions

Taketani et al.(1951)

III Repulsive core

Jastrow(1951)



Plan of my talk

1. Motivation
2. Strategy in (lattice) QCD to extract “potential”
3. Inelastic scattering: octet baryon interactions
 1. Baryon-Baryon interactions in an $SU(3)$ symmetric world
 2. Proposal for $S=-2$ inelastic scattering
 3. H-dibaryon
4. New method for hadron interactions in lattice QCD
5. Summary

2. Strategy in (lattice) QCD to extract “potential”

Challenge to Nambu’s statement

“Even now, it is impossible to completely describe nuclear forces beginning with a fundamental equation.”

Y. Nambu, “Quarks: Frontiers in Elementary Particle Physics”, World Scientific (1985)

Quantum Field Theoretical consideration

- S-matrix below inelastic threshold. Unitarity gives

$$S = e^{2i\delta}$$

- Nambu-Bethe-Salpeter (NBS) Wave function

$$\varphi_E(\mathbf{r}) = \langle 0 | N(\mathbf{x} + \mathbf{r}, 0) N(\mathbf{x}, 0) | 6q, E \rangle$$

6 quark QCD eigen-state with energy E

$N(x) = \varepsilon_{abc} q^a(x) q^b(x) q^c(x)$: local operator

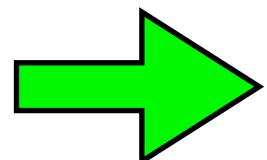
Asymptotic behavior

$$r = |\mathbf{r}| \rightarrow \infty$$

$$\varphi_E^l(r) \rightarrow A_l \frac{\sin(kr - l\pi/2 + \delta_l(k))}{kr}$$

$$E = \frac{k^2}{2\mu_N} = \frac{k^2}{m_N}$$

partial wave



$\delta_l(k)$ is the scattering phase shift

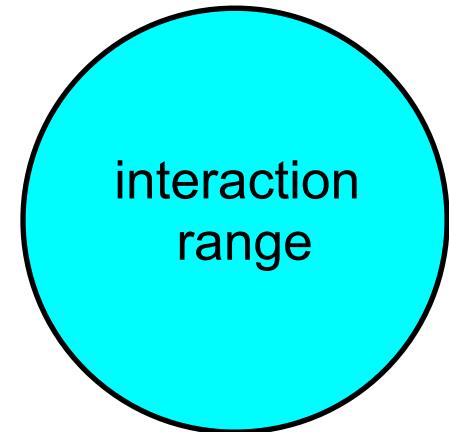
We define the potential as

$$[\epsilon_k - H_0]\varphi_E(\mathbf{x}) = \int d^3y U(\mathbf{x}, \mathbf{y})\varphi_E(\mathbf{y})$$

$$\epsilon_k = \frac{\mathbf{k}^2}{2\mu} \quad H_0 = \frac{-\nabla^2}{2\mu}$$

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

no interaction



Velocity expansion

$$U(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \nabla)\delta^3(\mathbf{x} - \mathbf{y})$$

Okubo-Marshak (1958)

$$V(\mathbf{x}, \nabla) = V_0(r) + V_\sigma(r)(\sigma_1 \cdot \sigma_2) + V_T(r)S_{12} + V_{LS}(r)\mathbf{L} \cdot \mathbf{S} + O(\nabla^2)$$

LO

LO

LO

NLO

NNLO

tensor operator

$$S_{12} = \frac{3}{r^2}(\sigma_1 \cdot \mathbf{x})(\sigma_2 \cdot \mathbf{x}) - (\sigma_1 \cdot \sigma_2)$$

spins

We calculate observables: phase shift, binding energy etc. using this approximated potential.

(quenched) potentials

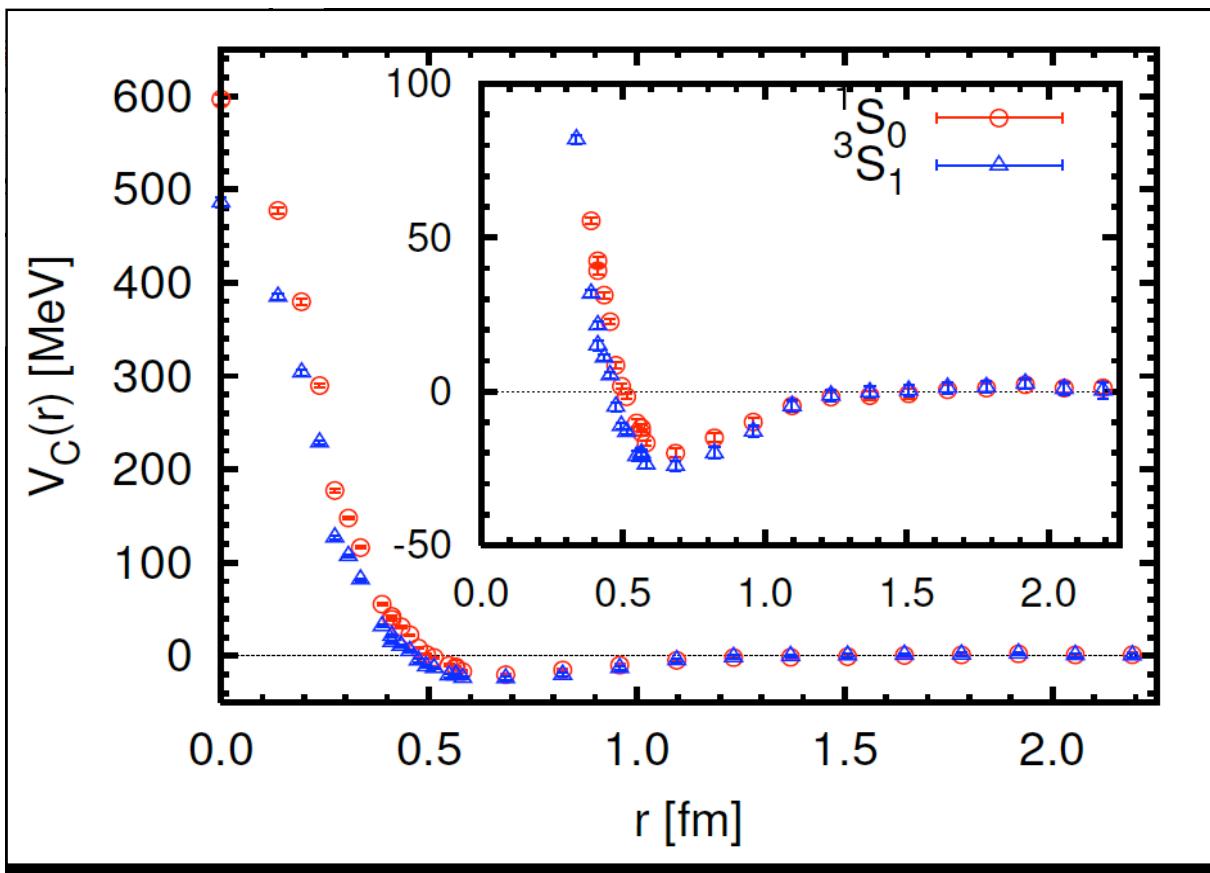
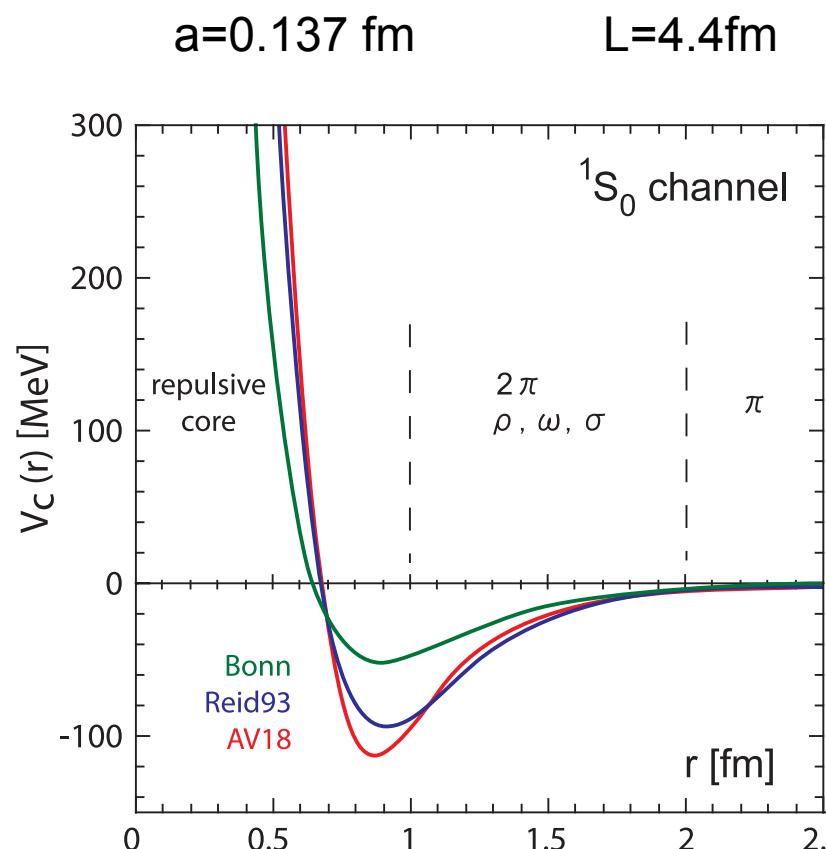
LO (effective) central Potential

$$E \simeq 0$$

$$m_\pi \simeq 0.53 \text{ GeV}$$

$$V(r; {}^1 S_0) = V_0^{(I=1)}(r) + V_\sigma^{(I=1)}(r)$$

$$V(r; {}^3 S_1) = V_0^{(I=0)}(r) - 3V_\sigma^{(I=0)}(r)$$



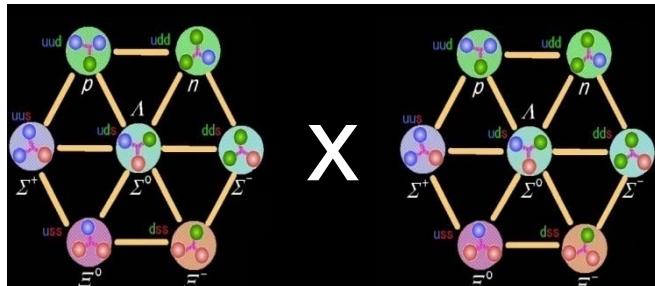
Qualitative features of NN potential are reproduced !

3. Inelastic scattering: octet baryon interactions

3-1. Baryon-Baryon interactions in an SU(3) symmetric world

$$m_u = m_d = m_s$$

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)



$$8 \times 8 = \underline{27 + 8s + 1} + \underline{10^* + 10 + 8a}$$

Symmetric

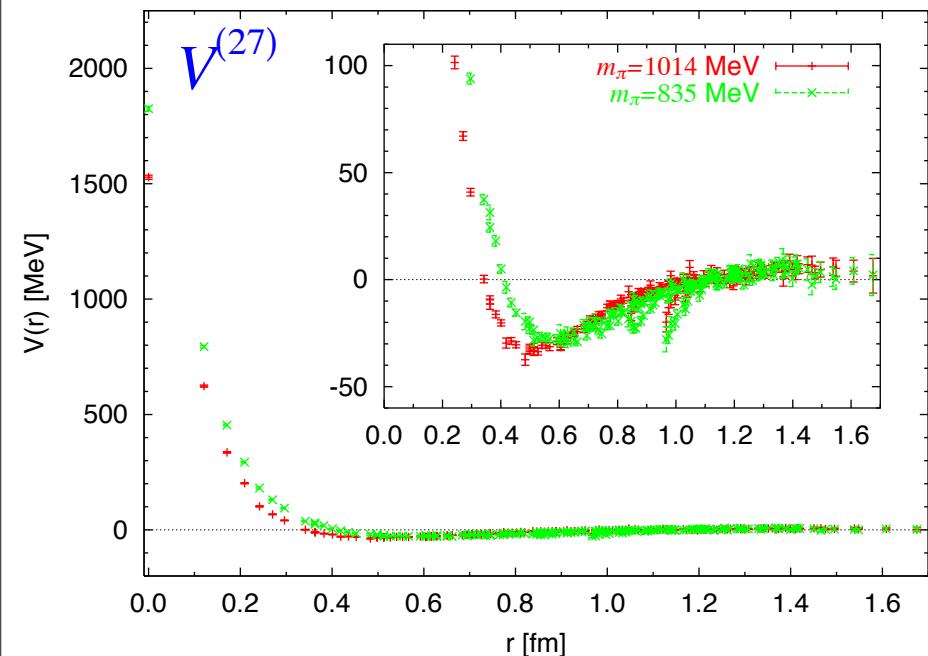
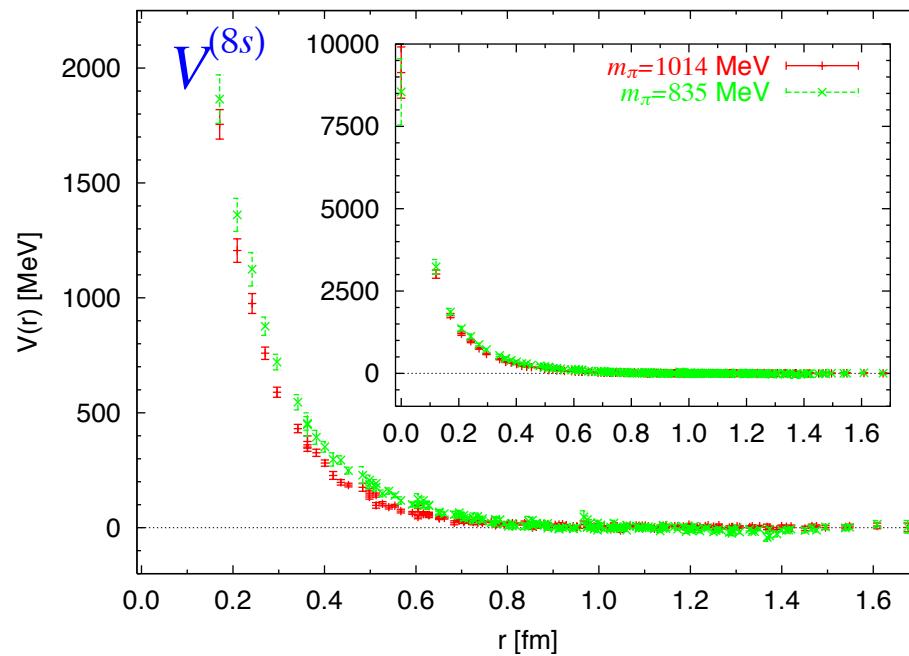
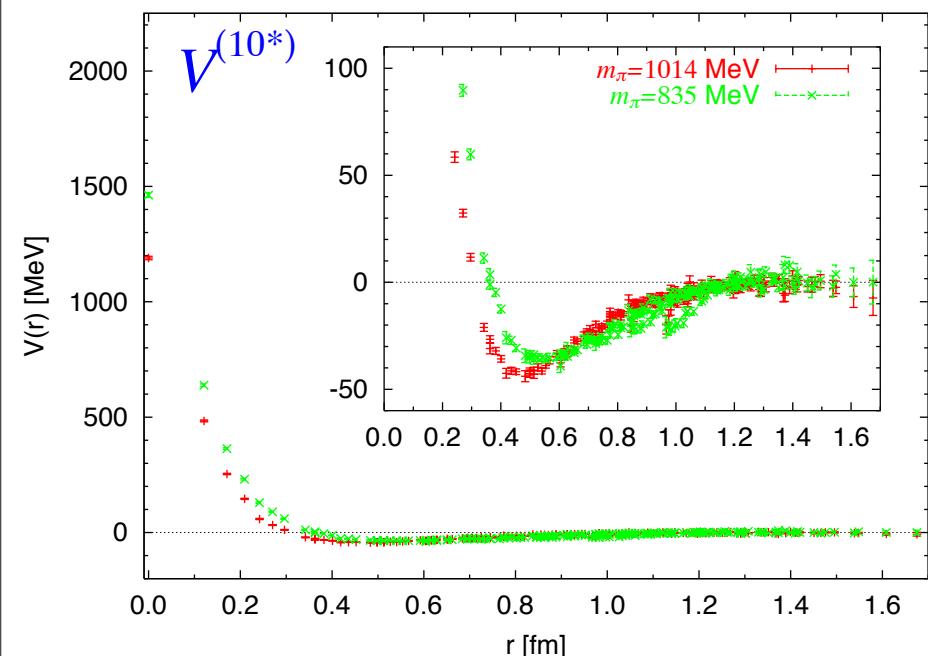
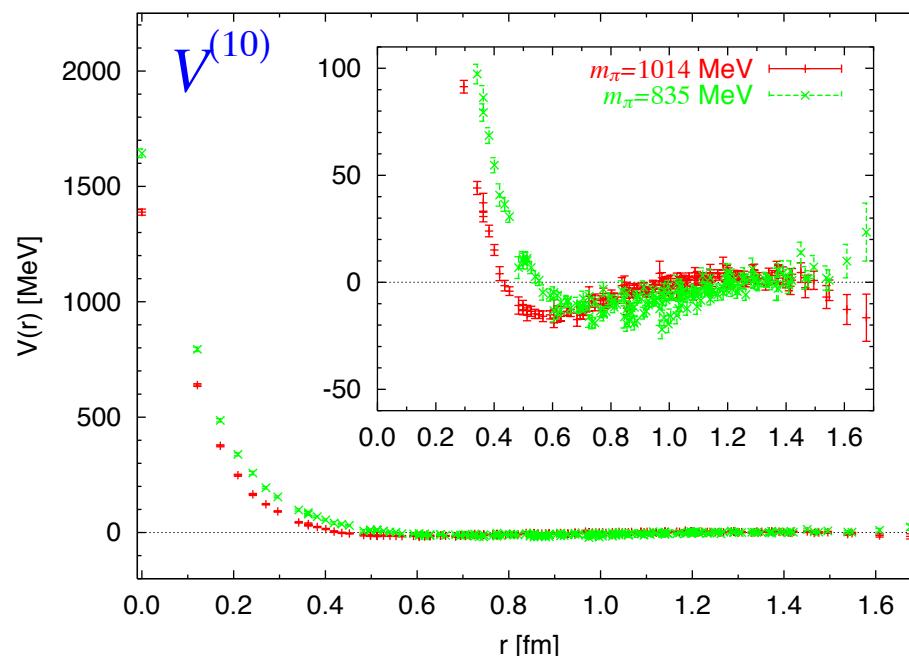
Anti-symmetric

6 independent potential in flavor-basis

$$\begin{array}{ccc}
 V^{(27)}(r), \ V^{(8s)}(r), \ V^{(1)}(r) & \xleftarrow{\hspace{1cm}} & {}^1S_0 \\
 V^{(10^*)}(r), \ V^{(10)}(r), \ V^{(8a)}(r) & \xleftarrow{\hspace{1cm}} & {}^3S_1
 \end{array}$$

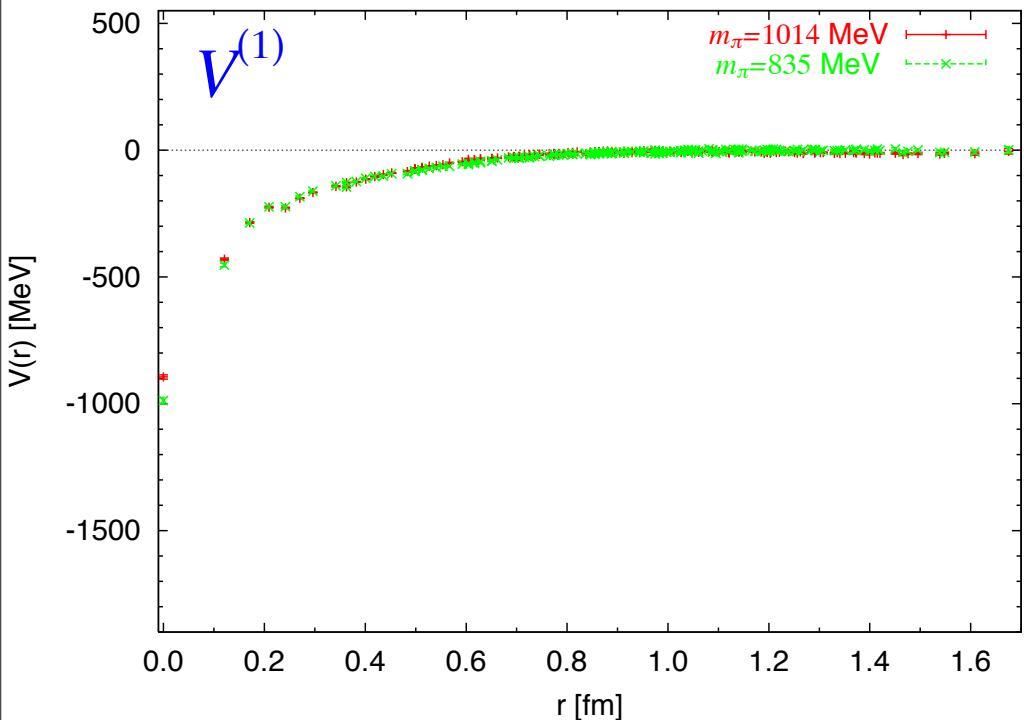
Potentials

Inoue for HAL QCD Collaboration

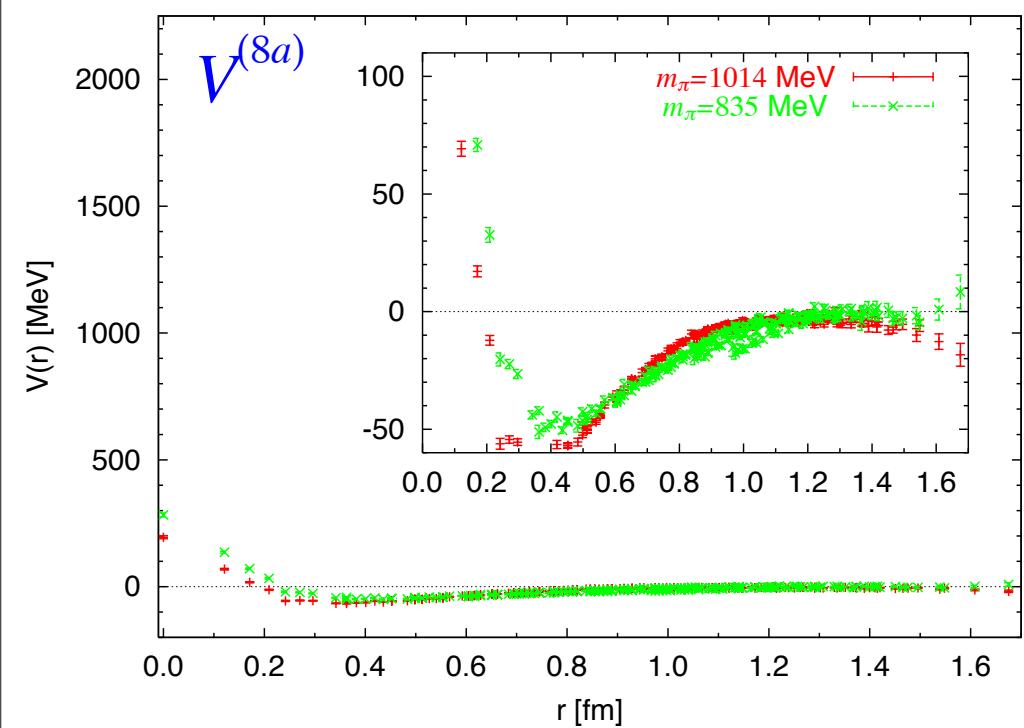


27, 10*: same as before, NN channel

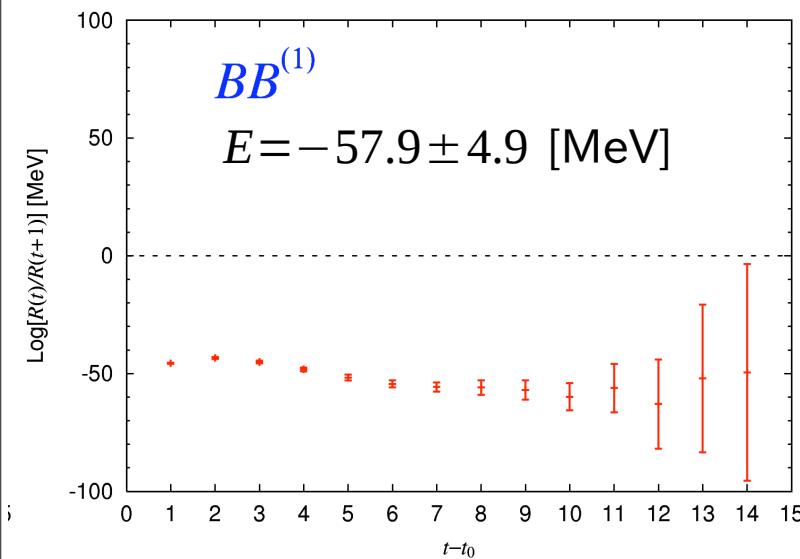
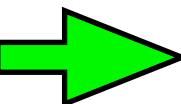
8s, 10: strong repulsive core



1: no repulsive core, attractive core !
No quark mass dependence



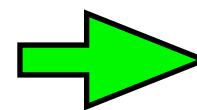
8a: week repulsive core,
deep attractive pocket



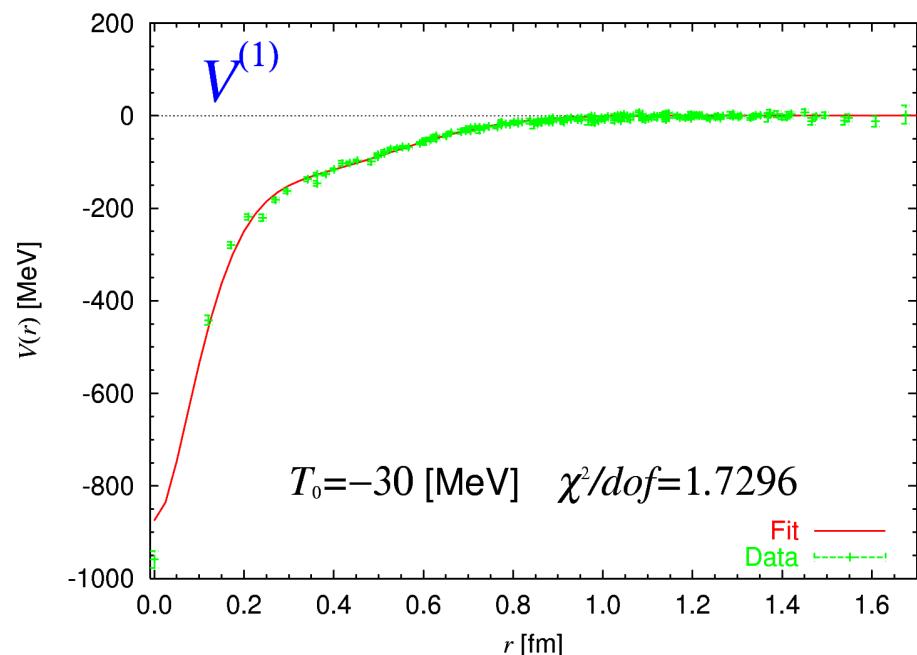
Bound state in 1(singlet) channel ?
H-dibaryon ?

However, it is difficult to determine E precisely, due to contaminations from excited states.

Singlet potential with a certain value of E



Schroedinger eq. predicts a bound state at $E < -30$ MeV



E [MeV]	E_0 [MeV]	$\sqrt{\langle r^2 \rangle}$ [fm]
$E = -30$	-0.018	24.7
$E = -35$	-0.72	4.1
$E = -40$	-2.49	2.3

Finite size effect is very large on this volume.
(consistent with previous results.)

$$V(r) = a_1 e^{-a_2 r^2} + a_3 \left(1 - e^{-a_4 r^2}\right)^2 \left(\frac{e^{-a_5 r}}{r}\right)^2$$

larger volume calculations are in progress.

3-2. Proposal for S=-2 In-elastic scattering

$m_N = 939 \text{ MeV}$, $m_\Lambda = 1116 \text{ MeV}$, $m_\Sigma = 1193 \text{ MeV}$, $m_\Xi = 1318 \text{ MeV}$

S=-2 System(I=0)

$M_{\Lambda\Lambda} = 2232 \text{ MeV} < M_{N\Xi} = 2257 \text{ MeV} < M_{\Sigma\Sigma} = 2386 \text{ MeV}$

The eigen-state of QCD in the finite box is a mixture of them:

$$|S = -2, I = 0, E\rangle_L = c_1(L)|\Lambda\Lambda, E\rangle + c_2(L)|\Xi N, E\rangle + c_3(L)|\Sigma\Sigma, E\rangle$$

$$E = 2\sqrt{m_\Lambda^2 + \mathbf{p}_1^2} = \sqrt{m_\Xi^2 + \mathbf{p}_2^2} + \sqrt{m_N^2 + \mathbf{p}_2^2} = 2\sqrt{m_\Sigma^2 + \mathbf{p}_3^2}$$

In this situation, we can not directly extract the scattering phase shift in lattice QCD.

HAL's proposal

Let us consider 2-channel problem for simplicity.

NBS wave functions for 2 channels at 2 values of energy:

$$\Psi_{\alpha}^{\Lambda\Lambda}(\mathbf{x}) = \langle 0 | \Lambda(\mathbf{x}) \Lambda(\mathbf{0}) | E_{\alpha} \rangle \quad \alpha = 1, 2$$
$$\Psi_{\alpha}^{\Xi N}(\mathbf{x}) = \langle 0 | \Xi(\mathbf{x}) N(\mathbf{0}) | E_{\alpha} \rangle$$

They satisfy

$$(\nabla^2 + \mathbf{p}_{\alpha}^2) \Psi_{\alpha}^{\Lambda\Lambda}(\mathbf{x}) = 0$$

$$(\nabla^2 + \mathbf{q}_{\alpha}^2) \Psi_{\alpha}^{\Xi N}(\mathbf{x}) = 0$$

$$|\mathbf{x}| \rightarrow \infty$$

We define the “potential” from the **coupled channel** Schroedinger equation:

$$\left(\frac{\nabla^2}{2\mu_{\Lambda\Lambda}} + \frac{\mathbf{p}_\alpha^2}{2\mu_{\Lambda\Lambda}} \right) \Psi_\alpha^{\Lambda\Lambda}(\mathbf{x}) = V^{\Lambda\Lambda \leftarrow \Lambda\Lambda}(\mathbf{x}) \Psi_\alpha^{\Lambda\Lambda}(\mathbf{x}) + V^{\Lambda\Lambda \leftarrow \Xi N}(\mathbf{x}) \Psi_\alpha^{\Xi N}(\mathbf{x})$$

diagonal

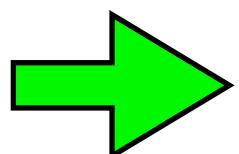
off-diagonal

$$\left(\frac{\nabla^2}{2\mu_{\Xi N}} + \frac{\mathbf{q}_\alpha^2}{2\mu_{\Xi N}} \right) \Psi_\alpha^{\Xi N}(\mathbf{x}) = V^{\Xi N \leftarrow \Lambda\Lambda}(\mathbf{x}) \Psi_\alpha^{\Lambda\Lambda}(\mathbf{x}) + V^{\Xi N \leftarrow \Xi N}(\mathbf{x}) \Psi_\alpha^{\Xi N}(\mathbf{x})$$

off-diagonal

diagonal

μ : reduced mass



$$\begin{pmatrix} V^{X \leftarrow X}(\mathbf{x}) \\ V^{X \leftarrow Y}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \Psi_1^X(\mathbf{x}) & \Psi_1^Y(\mathbf{x}) \\ \Psi_2^X(\mathbf{x}) & \Psi_2^Y(\mathbf{x}) \end{pmatrix}^{-1} \begin{pmatrix} (E_1 - H_0^X) \Psi_1^X(\mathbf{x}) \\ (E_2 - H_0^X) \Psi_2^X(\mathbf{x}) \end{pmatrix}$$

$X \neq Y$ $X, Y = \Lambda\Lambda$ or ΞN

$$E_\alpha = \frac{\mathbf{p}_\alpha^2}{2\mu_{\Lambda\Lambda}}, \frac{\mathbf{q}_\alpha^2}{2\mu_{\Xi N}}$$

$\alpha = 1, 2$

Using the potentials:

$$\begin{pmatrix} V^{\Lambda\Lambda \leftarrow \Lambda\Lambda}(\mathbf{x}) & V^{\Xi N \leftarrow \Lambda\Lambda}(\mathbf{x}) \\ V^{\Lambda\Lambda \leftarrow \Xi N}(\mathbf{x}) & V^{\Xi N \leftarrow \Xi N}(\mathbf{x}) \end{pmatrix}$$

we solve the coupled channel Schroedinger equation in **the infinite volume** with **an appropriate boundary condition**.

For example, we take the incomming $\Lambda\Lambda$ state by hand.

In this way, we can avoid the mixture of several “in”-states.

$$|S = -2, I = 0, E\rangle_L = c_1(L)|\Lambda\Lambda, E\rangle + c_2(L)|\Xi N, E\rangle + c_3(L)|\Sigma\Sigma, E\rangle$$

Lattice is a tool to extract the interaction kernel (“T-matrix” or “potential”).

Preliminary results from HAL QCD Collaboration

2+1 flavor full QCD

Sasaki for HAL QCD Collaboration

$a=0.1$ fm, $L=2.9$ fm

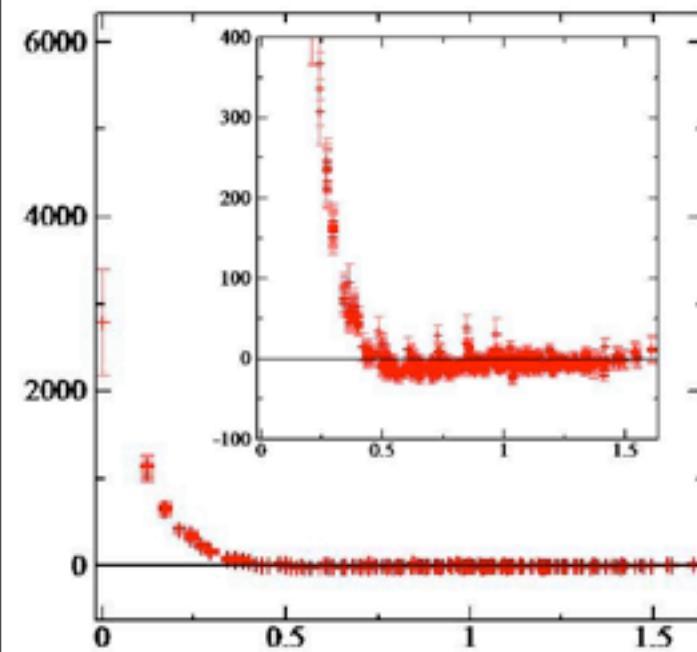
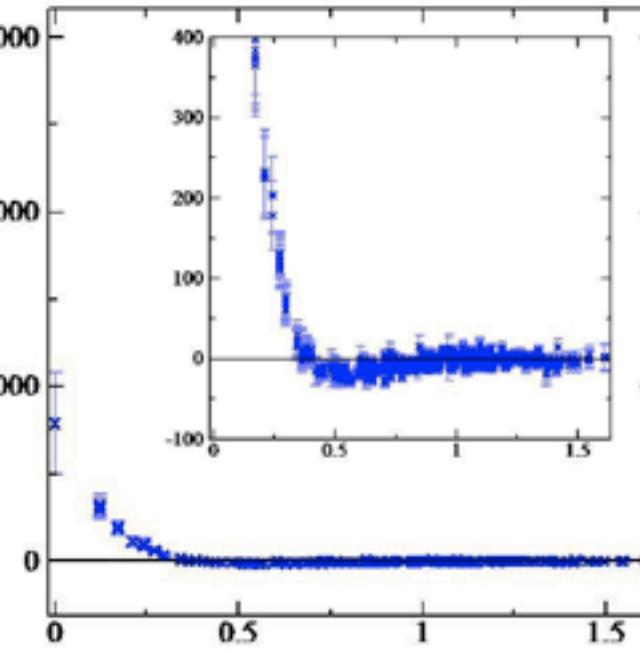
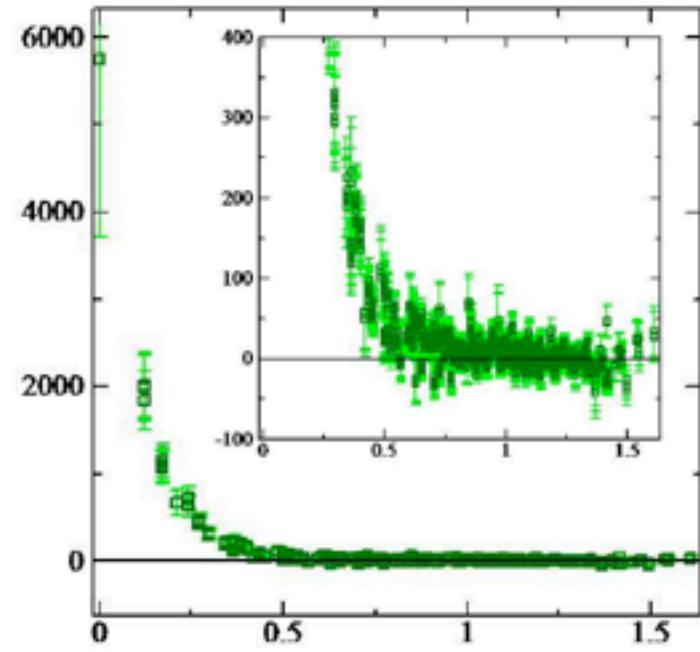
$m_\pi \simeq 870$ MeV

Diagonal part of potential matrix

$V_{\Lambda\Lambda-\Lambda\Lambda}$

$V_{N\Xi-N\Xi}$

$V_{\Sigma\Sigma-\Sigma\Sigma}$

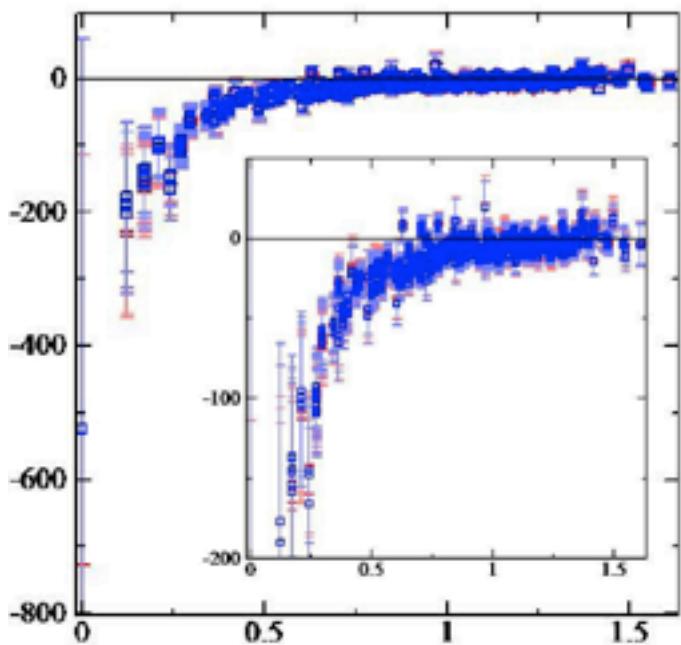
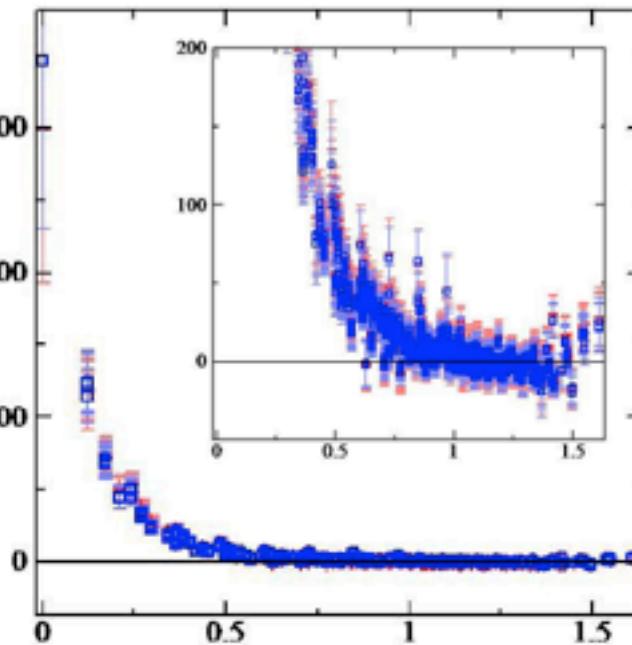
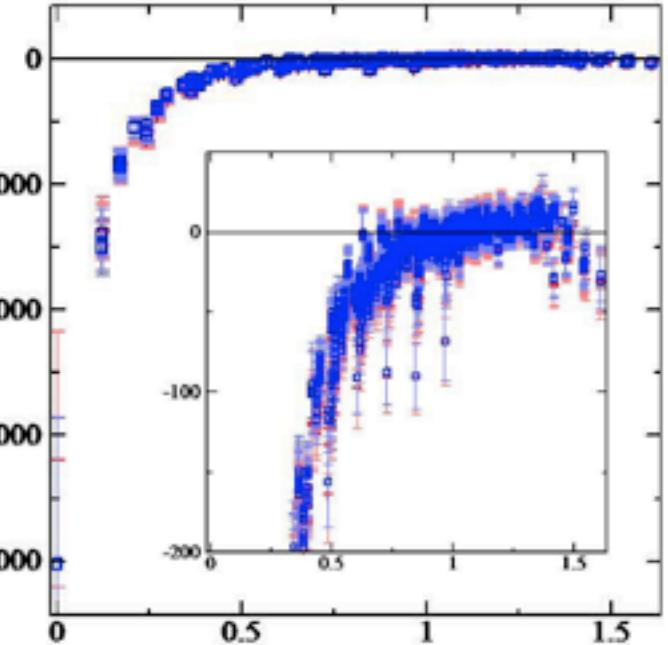


Non-diagonal part of potential matrix

$V_{\Lambda\Lambda-N\Sigma}$

$V_{\Lambda\Lambda-\Sigma\Sigma}$

$V_{N\Sigma-\Sigma\Sigma}$



$$V_{A-B} \simeq V_{B-A}$$

Hermiticity ! (non-trivial check)

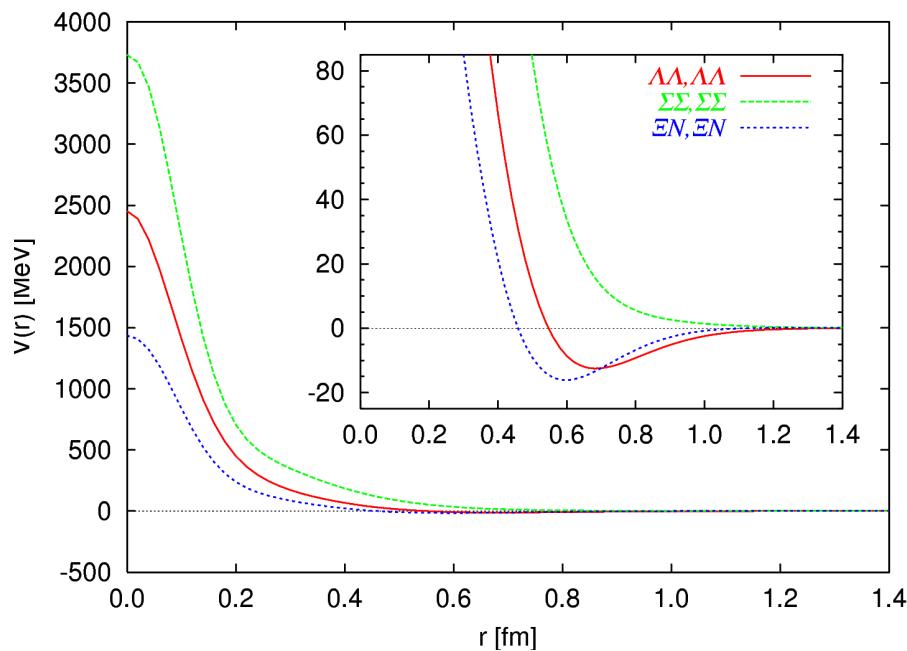
3-3. H-dibaryon

1. S=-2 singlet state may become the bound state in flavor SU(3) limit.
2. In the real world (s is heavier than u,d), some resonance may appear above $\Lambda\Lambda$ but below ΞN threshold.
3. Trial demonstration:
 - 3.1. Use potential in SU(3) limit
 - 3.2. Introduce only mass difference from 2+1 simulation

Inoue for HAL QCD Collaboration

Potentials in particle basis in SU(3) limit

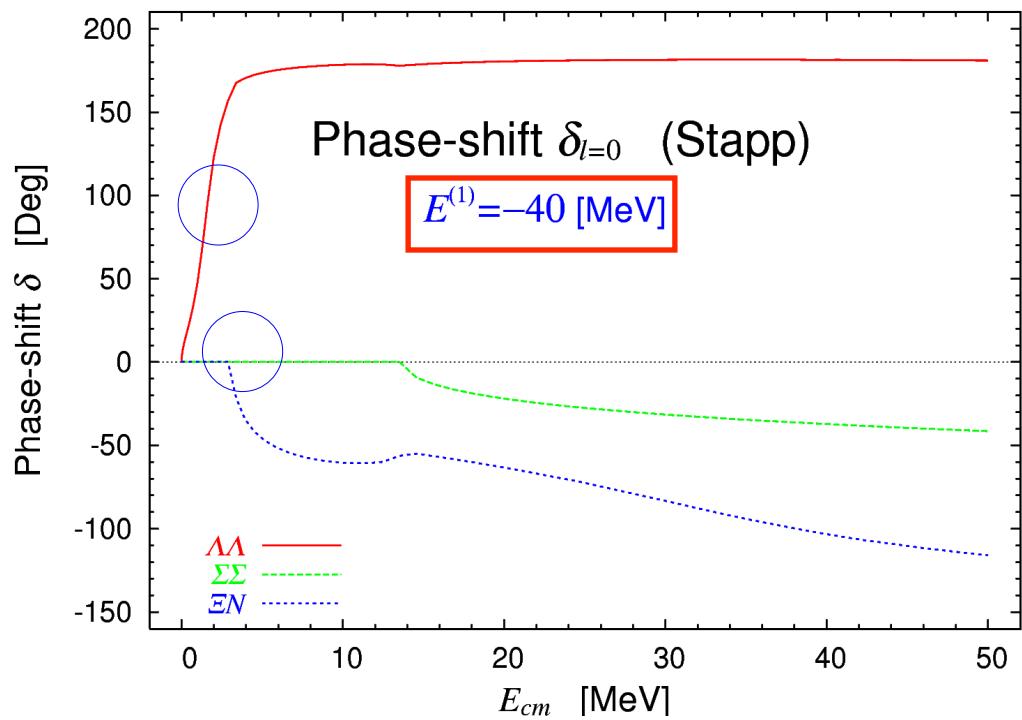
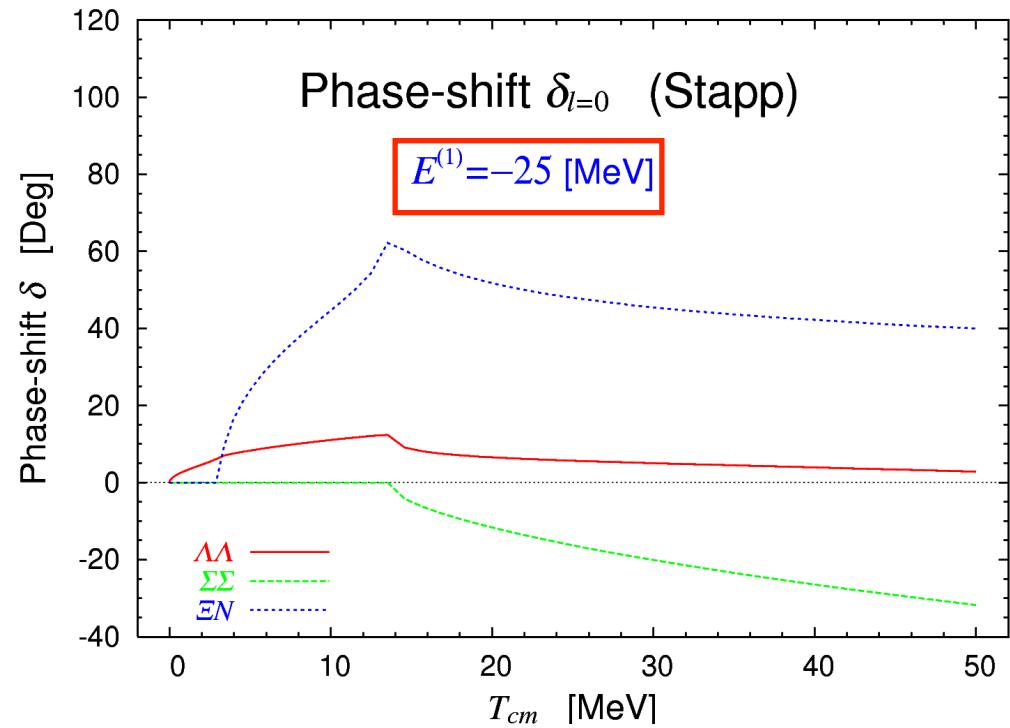
$$\begin{pmatrix} \Lambda\Lambda \\ \Sigma\Sigma \\ \Xi N \end{pmatrix} = U \begin{pmatrix} |27\rangle \\ |8\rangle \\ |1\rangle \end{pmatrix}, \quad U \begin{pmatrix} V^{(27)} & & \\ & V^{(8)} & \\ & & V^{(1)} \end{pmatrix} U^t \rightarrow \begin{pmatrix} V^{\Lambda\Lambda} & V^{\Lambda\Lambda}_{\Sigma\Sigma} & V^{\Lambda\Lambda}_{\Xi N} \\ V^{\Sigma\Sigma} & V^{\Sigma\Sigma}_{\Xi N} & \\ V^{\Xi N} & & \end{pmatrix}$$



where $T_0^{(1)} = -25$, $T_0^{(8)} = 25$, $T_0^{(27)} = -5$ [MeV] are used

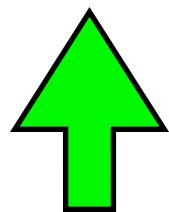
$S = -2, I = 0, ^1S_0$ scattering

“2+1 flavor”



“2+1 flavor”

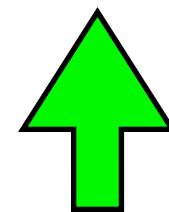
resonance



SU(3) limit

bound state

no resonance



no bound state

4. New method for hadron interactions in lattice QCD

Inelastic scattering II: particle production

$$E \geq E_{th} = 2m_N + m_\pi$$

NBS wave function

elastic scattering $NN \leftarrow NN$

$$\begin{aligned} \varphi_E(\mathbf{r}) &= e^{i\mathbf{k}\cdot\mathbf{r}} + \int \frac{d^3p}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{r}} \frac{E_k + E_p}{8E_p^2} \frac{T(\mathbf{p}, -\mathbf{p} \leftarrow \mathbf{k}, -\mathbf{k})}{\mathbf{p}^2 - \mathbf{k}^2 - i\epsilon} \\ &+ \mathcal{I}(\mathbf{r}) \end{aligned}$$

inelastic contribution $NN\pi \leftarrow NN \propto e^{i\mathbf{q}\cdot\mathbf{r}} \quad |\mathbf{q}| = O(E - E_{th})$

Consider additional NBS wave function

$$\varphi_{E,\pi}(\mathbf{r}, \mathbf{y}) = \langle 0 | N(\mathbf{r} + \mathbf{x}, 0) \pi(\mathbf{y} + \mathbf{x}, 0) N(\mathbf{x}, 0) | 6q, E \rangle$$

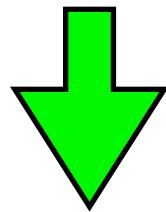
Note that

$$|6q, E\rangle = c_1 |NN, E\rangle_{\text{in}} + c_2 |NN\pi, E\rangle_{\text{in}} + \dots$$

Coupled channel equations

$$(E - H_0)\varphi_E(\mathbf{x}) = \int d^3y U_{11}(\mathbf{x}; \mathbf{y})\varphi_E(\mathbf{y}) + \int d^3y d^3z U_{12}(\mathbf{x}; \mathbf{y}, \mathbf{z})\varphi_{E,\pi}(\mathbf{y}, \mathbf{z})$$

$$(E - H_0)\varphi_{E,\pi}(\mathbf{x}, \mathbf{y}) = \int d^3z U_{21}(\mathbf{x}, \mathbf{y}; \mathbf{z})\varphi_E(\mathbf{z}) + \int d^3z d^3w U_{22}(\mathbf{x}, \mathbf{y}; \mathbf{z}, \mathbf{w})\varphi_{E,\pi}(\mathbf{z}, \mathbf{w})$$

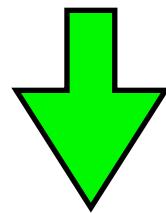


Velocity expansion at LO, two values of E

$$i = 1, 2$$

$$(E_i - H_0)\varphi_{E_i}(\mathbf{x}) = V_{11}(\mathbf{x})\varphi_{E_i}(\mathbf{x}) + V_{12}(\mathbf{x}, \mathbf{x})\varphi_{E_i,\pi}(\mathbf{x}, \mathbf{x})$$

$$(E_i - H_0)\varphi_{E_i,\pi}(\mathbf{x}, \mathbf{y}) = V_{21}(\mathbf{x}, \mathbf{y})\varphi_{E_i}(\mathbf{x}) + V_{22}(\mathbf{x}, \mathbf{y})\varphi_{E_i,\pi}(\mathbf{x}, \mathbf{y})$$



$$V_{11}(\mathbf{x}) : NN \leftarrow NN$$

$$V_{12}(\mathbf{x}, \mathbf{x}) : NN \leftarrow NN\pi$$

$$V_{21}(\mathbf{x}, \mathbf{y}) : NN\pi \leftarrow NN$$

$$V_{22}(\mathbf{x}, \mathbf{y}) : NN\pi \leftarrow NN\pi$$

Solve Schroedinger equation with these potentials and a specific B.C.

General prescription

- Consider a QCD eigenstate with given quantum numbers Q and energy E .
- Take all possible combinations with Q of **stable particles** whose threshold is below or near E .
ex. $Q = 6q$: $NN, NN\pi, NN\pi\pi, NNK^+K^-, N\bar{N}N, \dots$
- Calculate NBS wave functions for all combinations.
- Extract coupled-channel potentials in **a finite volume**.
- Solve Schrödinger equation with these potentials in **the infinite volume** with **a suitable B.C.** to obtain physical observables.

In practice, of course, final states more than 2 particles are very difficult to deal with.

5. Summary

Summary

- Potentials from NBS wave function are **useful tools** to extract hadron interactions in lattice QCD. **Finite size effect** is smaller and quark mass dependence is milder than the phase shift.
 - Combined with Schroedinger equation in **the infinite box**. **Rotational symmetry** is recovered.
- **Inelastic scattering** can also be analysed in terms of coupled channel “potentials”.
 - $\Lambda\Lambda$ scattering, H-dibaryon as a resonance
 - unstabel particle as a resonace
 - **ρ meson**, Δ , Roper etc.
 - exotic: penta-quark, X, Y etc.
 - **3-Baryon forces** : NNN (Doi) , BBB-> Neutron star
 - Weak decay ?

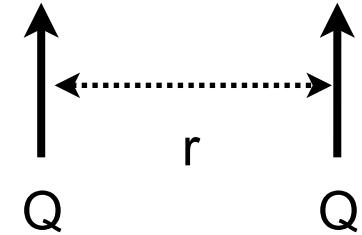
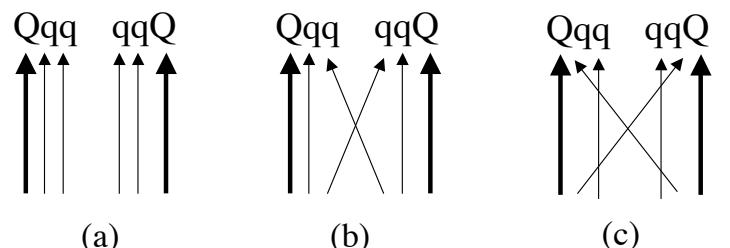
Definition of “Potential” in (lattice) QCD ?

Previous attempt

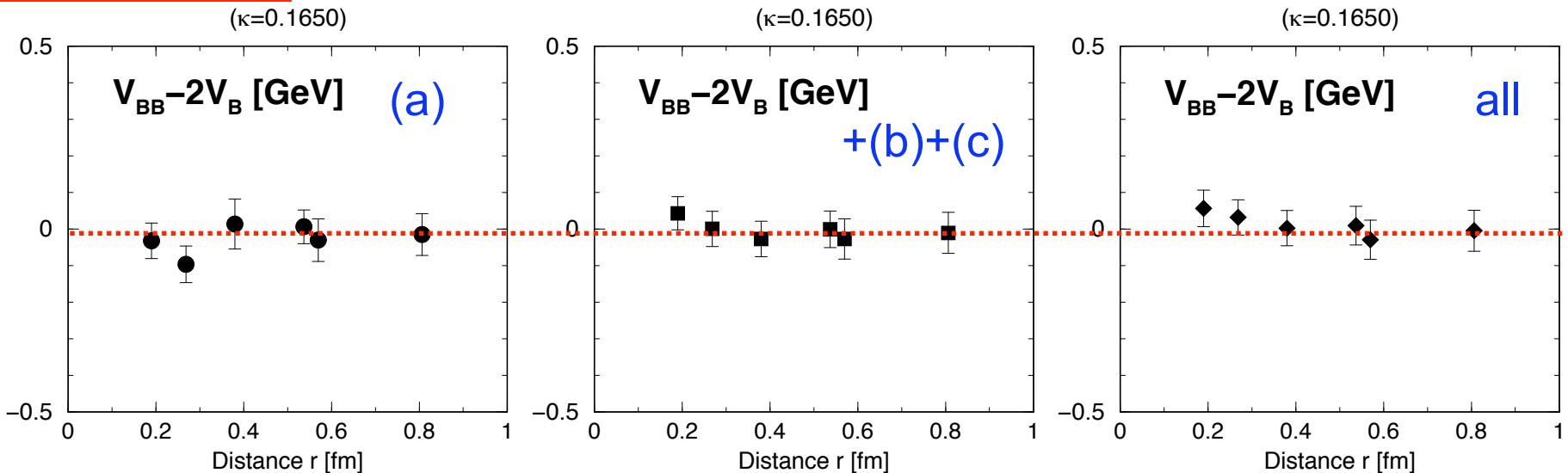
Takahashi-Doi-Suganuma, AIP Conf.Proc. 842,249(2006)

calculate energy of $Q\bar{q}q + \bar{q}qQ$ as a function of r between $2Q$.

Q :static quark, q : light quark



Quenched result



Almost no dependence on r !

cf. Recent successful result in the strong coupling limit
(deForcrand-Fromm, PRL104(2010)112005)

Frequently Asked Questions

[Q1] Operator dependence of the potential

[Q2] Energy dependence of the potential

[A1] choice of operator = scheme, cf. running coupling

$(N(x), U(x,y))$ is a combination to define observables

QM: $(\Phi, U) \rightarrow$ observables

QFT: (asymptotic field, vertices) \rightarrow observables

EFT: (choice of field, vertices) \rightarrow observables

- local operator = convenient choice for reduction formula

[A2] $U(x,y)$ is E-independent by construction

- non-locality can be determined order by order in velocity expansion (cf. ChPT)

Non-local, E-independent

Local, E-dependent

$$\left(E + \frac{\nabla^2}{2m} \right) \varphi_E(\mathbf{x}) = \int d^3y U(\mathbf{x}, \mathbf{y}) \varphi_E(\mathbf{y})$$

$$V_E(\mathbf{x}) \varphi_E(\mathbf{x}) = \left(E + \frac{\nabla^2}{2m} \right) \varphi_E(\mathbf{x})$$

Validity of the velocity expansion of U

Leading Order

$$V_C(r) = \frac{(E - H_0)\varphi_E(\mathbf{x})}{\varphi_E(\mathbf{x})}$$

Local potential approximation

E-dependent

Non-locality

From E-dependence, one may determine higher order terms:

$$V(\mathbf{x}, \nabla) = V_C(r) + V_T(r)S_{12} + V_{LS}(r)\mathbf{L} \cdot \mathbf{S} + \{V_D(r), \nabla^2\} + \dots$$

Numerical check in quenched QCD

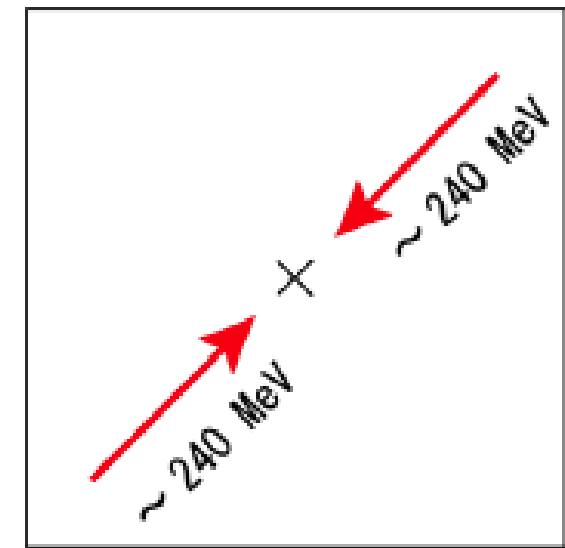
K. Murano, N. Ishii, S. Aoki, T. Hatsuda

PoS Lattice2009 (2009)126.

$m_\pi \simeq 0.53$ GeV

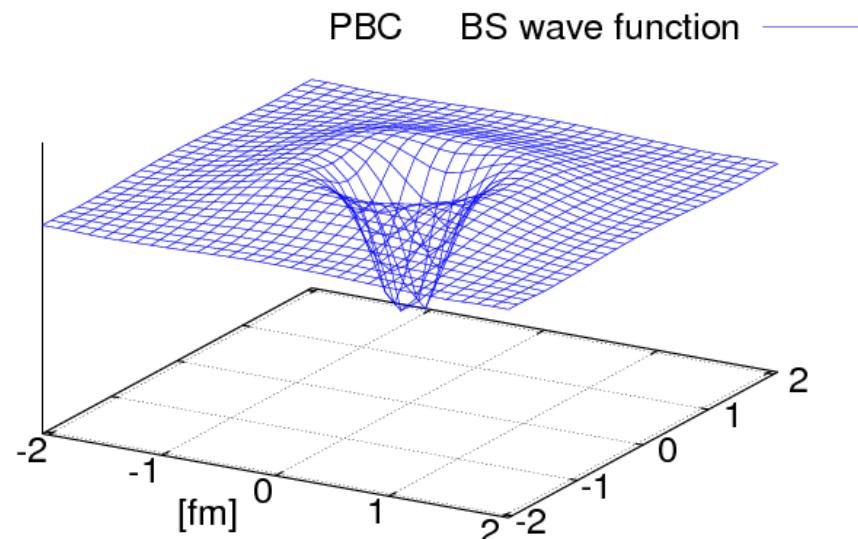
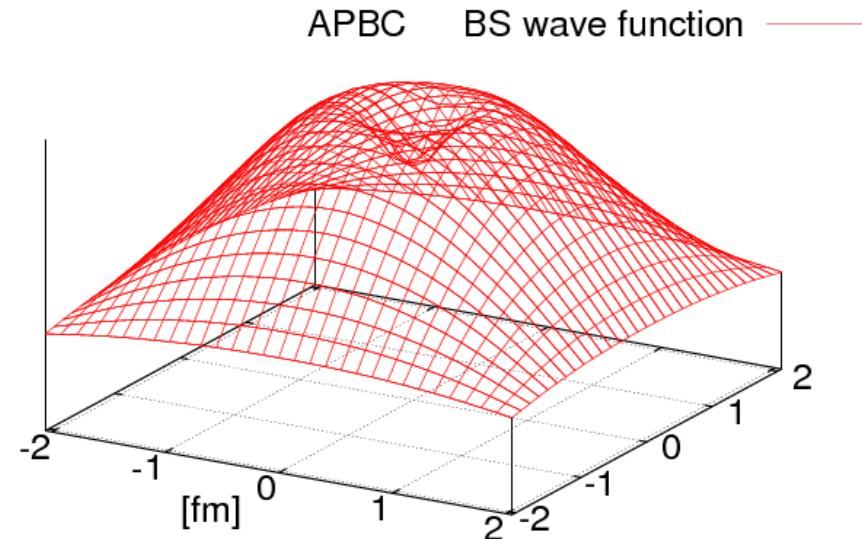
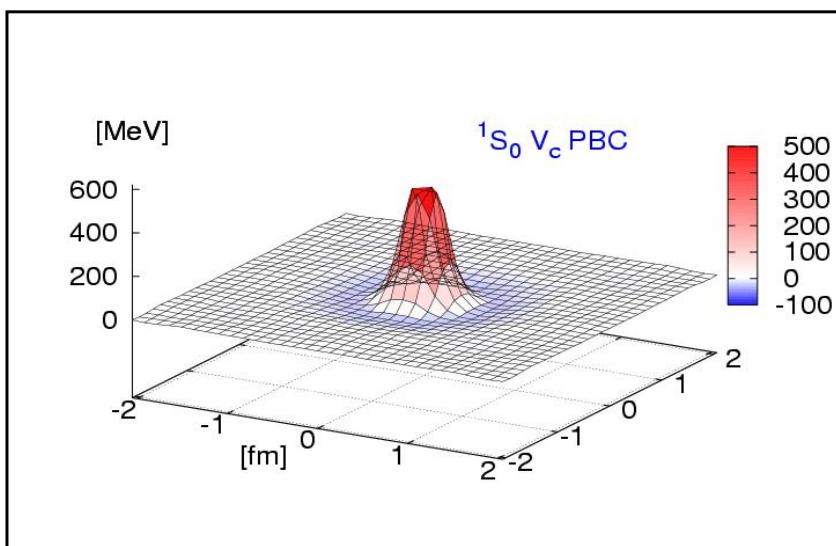
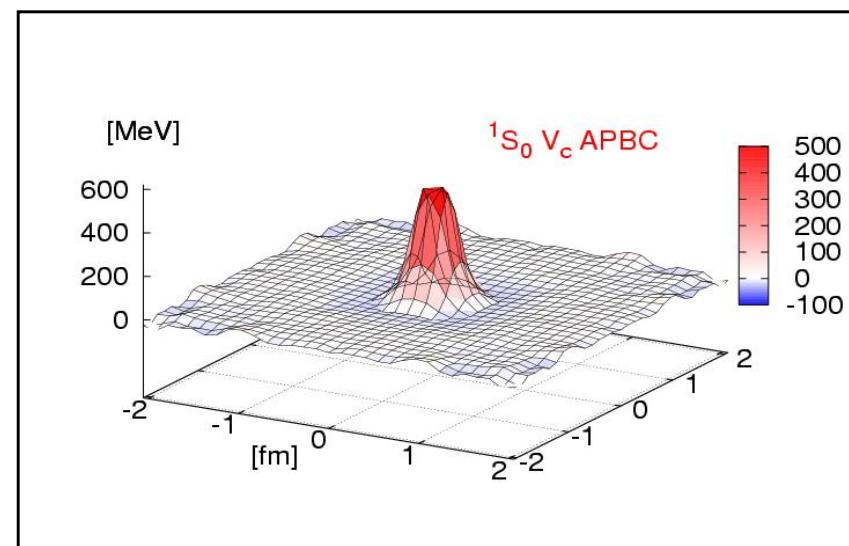
$a=0.137$ fm

Anti-Periodic B.C.

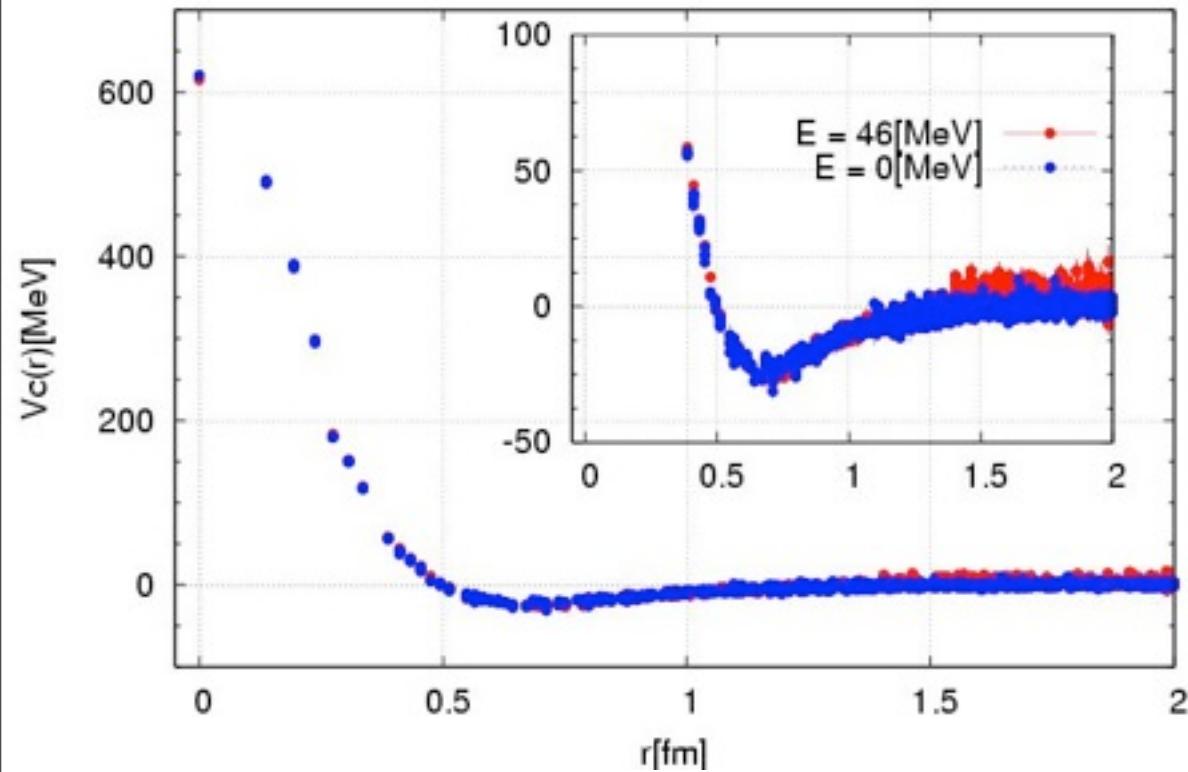


● PBC (E~0 MeV)

● APBC (E~46 MeV)



$V_c(r; ^1S_0)$:PBC v.s. APBC $t=9$ ($x=+-5$ or $y=+-5$ or $z=+-5$)



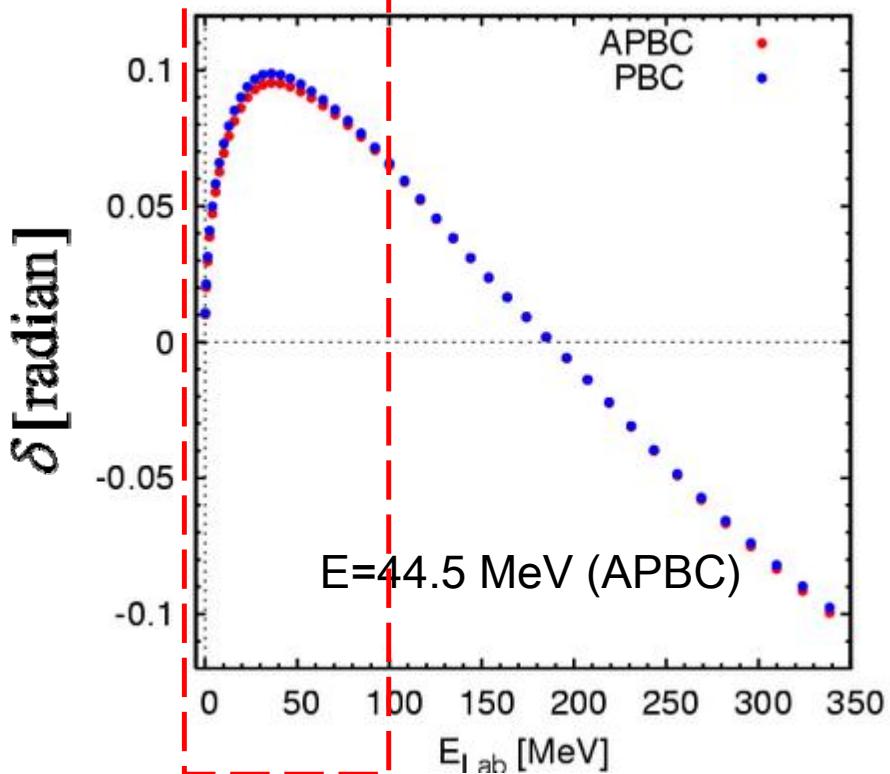
E-dependence of the local potential turns out to be very small at low energy in our choice of wave function.

Quenched QCD

$m_\pi \simeq 0.53$ GeV

$a=0.137$ fm

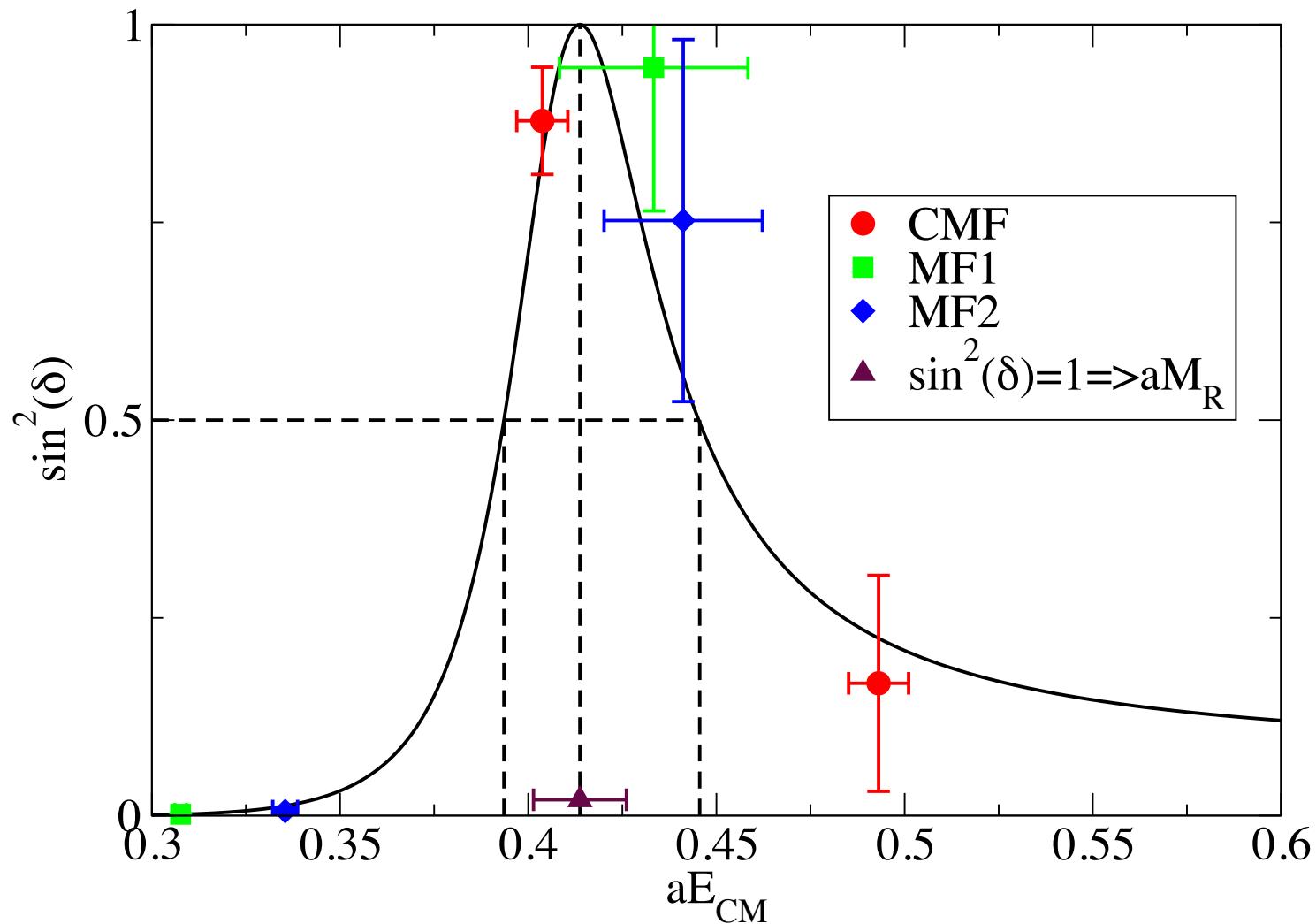
phase shifts from potentials



$\pi^+\pi^-$ scattering (ρ meson width)

Finite volume method

ETMC: Feng-Jansen-Renner, PLB684(2010)



$$\varphi_E(\mathbf{x}) = \langle 0 | \pi(\mathbf{x}, 0) \pi(\mathbf{0}, 0) | \rho, E \rangle \rightarrow V(\mathbf{x}) \rightarrow \sin^2 \delta(s) ?$$