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Expansion of hot & dense matter

Hydrodynamics and the EoS

# E0S controls expansion of hot/dense matter created in a
heavy ion collision;

# slower velocity of sound ==|arger lifetime == |arger thermal
rates of e.g. thermal dileptons, thermal photons,.....

Bjorken formula:

R =1.2AY3fm :O:D:
dE dN * e
T | S

1 1dE

€, =
Y nR*t, dy

To : equilibration time;
time after collision, at
which hydro description may start
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Expansion of hot & dense matter

Hydrodynamics and the EoS

:O:D:} RHIC: Raw = 7im

- ng (Br) ~ 1GeV
171 JE dN/dy =~ 600

Epj = o ~ (0.5—1)fm

TR T, dy
Bjorken formula:
R =1.2AY3fm

= ep; ~ (5 — 10) GeV /fm®
= Tp ~ (225 — 270)MeV

dE dIN LHC: 7o =~ 0.2 fm
dy — (ET>@ eg; =~ 300 GeV /fm®
To : equilibration time; To ~ 700 MeV

time after collision, at
which hydro description may start
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Expansion of hot & dense matter

1-d hydro & lifetime of the QGP

d
@ simple 1-d hydro: 9,7, =0 = ‘ | €+p:O
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0.35 | . | - 6(7-0)

0.30 | Cg P ﬁ-«-*--“-"':':'xf-ﬁ: 1

. 3/4
0.25 | a ” 5 pe . G(T()) /
7 2406(p) 4 T. = To

0.20 | 32°g(p4) -~ m 6('7' )

~ i1 /" 323 8(asqtad) —®— C
0.15 | HRG - --- | _
1o b | @ Lattice EoS = (2+1)-f QCD EoS:
| e[GeV/fm] | b 1 1 1.2
T T 100 1000 € T 3 1 + 0.5¢

M. Cheng et al. (hotQCD), arXiv:0903.4379

F. Karsch,Jap-Dt workshop,, 2010



¥ simple 1-d hydro:
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Expansion of hot & dense matter

1-d hydro & lifetime of the QGP
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Equation of State

HotQCD ongoing research project

EoS in the transition region;

hadron resonance gas vs. trace anomaly: NEW
O(N) critical behavior asgtad Nt=12, hisq Nt=8
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Equation of State

(2+1)-flavor QCD

stout, cont: ((Nt=8)+(Nt=10))/2
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Expansion of hot & dense matter

viscous hydrodynamics

¥ need 3-d, viscous hydro to describe asymmetric pressure
gradients de e+p 1 (4 @> —0

o,T,, =0 = _
ale dr T 72\3 "
@ need small7)/ s to understand RHIC data b_Ulk and shear
VISCOSIty

elliptic flow

25

20

dN 1 (X & P N ——
— = — (142 E VU, coS(P) pr1Gev)
P.+U. Romatschke, PRL 99, 172301 (2007)
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Expansion of hot & dense matter

viscous hydrodynamics

¥ spectral representation of the energy-momentum tensor

0 cosh(w(t — 1/2T))
T12(0)T12(t)) = dw p(w
TaOTa) = | do plw) 0 =00
o p(w)
m) shearviscosity 1 = lim —~
l—— —— ———— w—0 W i 358
o OO n/s~01 | 3 P
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H. Meyer, PRD76, 101701 (2007) A. Nakamura, S. Sakai, PRL94, 072305 (2005)
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3-d viscous hydro with

EoS from lattice QCD
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Thermal Dileptons

probing the structure of the QGP

*G:D_,} thermal dilepton rate:
5) Oiem PV(waﬁa T)

dwd3pd4 ~ 9 63 w2(ew/T — 1)

= 71'R2Ay
thermal emission during expansion:
AW reay%m [Ty, pv (w5 T(7))
dwd3p 9 673 /., w2(ew/T(T) — 1)

T'(7) from EoS using Bjorken model or BETTER 3-hydro

need more information on temperature and
momentum dependence of the vector spectral function

F. Karsch,Jap-Dt workshop,, 2010



Thermal Dilepton & Photon Rates

Interplay with Hydro-Evolution

centrality dN/dy(pr > 1GeV/c) Initial temperature:
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Thermal Dilepton & Photon Rates

low mass dilepton enhancement

Thermal dilepton rate: vector spectral function

dW _Eagm pv(w,p,T) <£

dwd3p 9 673 w2(e‘*’/T — 1)
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Thermal Dilepton & Photon Rates

low mass dilepton enhancement

Thermal dilepton rate: vector spectral function
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Vector Meson Spectral Function

Thermal Dilepton

Vector meson correlation function:
cosh(w(m — 1/2T))
sinh(w/2T)

—~ PV (wa ﬁa T)
T

guenched QCD, clover action:

volume dependence
N2 x 16, N, = 48 — 128

cut-off dependence
1283 X N, , N, = 16 — 48

0 0.1 0.2 0.3 0.4 0.5 quark mass dependence

BNL-Bielefeld, Vector current correlator MS
in quenched QCD, in preparation mq /T = 0.02, 0.11

F. Karsch,Jap-Dt workshop,, 2010



Vector Meson Spectral Function

Thermal Dilepton

Vector meson correlation function:

> dw cosh(w(m — 1/2T))

G D, T') = - s 0, T
v{n P T) /0 2 PV P ) T (2T

- pv(w) = —Xqwd(w) + pii(w)

1.55 [ T2Gy(tTVIxgGiee(:T)]

151 ﬁ

1.45 |
14
1.35 |
1.3 b

|
. O

ansatz: BW+continuum

(0, T) wI’

1.25 A w :c

Pl w4 (r/2)2
11 o1 0.2 0.3 0.4 05 (1 _|_ k) _wz tanh(UJ/4:T)

BNL-Bielefeld, Vector current correlator 2 *@(wo, Aw)

iIn quenched QCD, in preparation
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Thermal Dilepton & Photon Rates

Interplay with Hydro-Evolution

Thermal dilepton rate: vector spectral function

dw  5a2  pv(w,p,T) <£

dwd3p ~ 9 673 w2(ev/T — 1)

electrical

.o~ 1im p;;(w)/w '
conductivity lim p;;(w)/ HTL resummation,
5 I | | I i/\ perturbation theory
p(w)® A,=0.5 =
\4 — v —
3 | | 1e-05 T ' '
g/ T=0 \ dW/ded®p
10 1e-06 p=0
2 | 1.5 | 1e-07 |
20 — ) BW-continuum: ®,/T=0, Ag,=0
.l 25 — | fe.08 I ©y/T=2.0, Apy=1.0
HTL
. - o7 1e-09 |
0 4 6 8 10
1e-10
1e-11 [lOW energy -
Breit-Wigner .1, l€Nhancement _oT
0 2 4 6 8 10

ansatz
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QCD phase diagram
(close to the chiral limit)

£ Future LHC Experiments

iEar/y Universe The Phases of QCD
RHIC low energy runs:

Vs = (9 —200)GeV/A

Current RHIC Experiments

Temperature

- charge fluctuations along
the freeze-out line

i - higher moments of charge

"""" fluctuations, e.g.

Skewness

— B ((5Nq)3>/0'2

Critical Point

Hadron Gas C°|9 r
Superconductor Kurt :
v Nuclear / u OSIS 4 4
acuum Matter Neutron Stars —_—
o Mo~ ~—T = kg = ((0Ng)™) /o, — 3

0 MeV 900 MeV
Baryon Chemical Potential
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The RHIC low energy runs

o 0.20
1 1] 1l
2 pun A o]
= usAu 2
[T 27 ikl T T l‘..-" -r
I_n 015_ I—! HHE@ @ "i.‘ —t
o AutAu & CuiCu sps 1
= Pb+Pb ) il
@ acs A
AusA :
& 010} R
&
& :
5 |
B ] b 1r
3 0.05F AurAu ‘—-
0 1
E 111 | 1 1 1 1 1 1 1 Il
L. 0.01 0.1 1
— 3 K, (GeV)
’I;B ‘,Lq B
T/T, | |
1 & m=00
o8 | . HRG LGT, m=0
@\ T;: J.Cleymans et. al.
0.6 1
04 r
0.2 r
Mg;/To

Moments of charge fluctuations

10.0

1.0

0.1
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STAR:
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FK, K Redlich, arXiv:1007.2581
data from STAR: arXiv:1004.4959

100

charge fluctuations at freeze-out agree
with HRG model predictions

freeze-out line and chiral phase transition

BNL-Bielefeld-GSI, in

preparation
F. Karsch,Jap-Dt workshop,, 2010



Phase diagram forus = 0

30

0O(4) physical
- @® point
?
Z(2) ne= 3
1 T T
0.5 1.0 phys1 5
mud/ mud

2.0

¥ drawn to scale

Is physics at the physical
guark mass point sensitive to
(universal) properties of the
chiral phase transition?

crit

physical point may be above m_

ny =3: m&L70 MeV

first order region starts below
physical pion mass value
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O(N) scaling and the chiral transition

<+ thermodynamics In the vicinity of a critical point:

p — 1 _ nl41/6 1/36

7i = yps M2V T) = R0 (U/R70) + £ (VS T)
1 /T 1

with scaling fields ¢ = ( 1) h= my
tO TC ho ms

<+ In the vicinity of (t,h)=(0,0) the chiral order parameter
and its susceptibility are given in terms of scaling functions

M=hY°fe(z) , xm=0M/Bh=hY?"1f (2)
1
Xt = OM /8T = h(B=1)/0B £/ ()

1 z ., _
Ix(z) = 5 (fG(Z) — EfG(z)> known from 3d O(N) spin model

F. Karsch,Jap-Dt workshop,, 2010



Scaling analysis In (2+1)-flavor QCD

RBC-Bielefeld-GSI arXiv:0909.5122; hotQCD in preparation

QCD with 2 light and a “physical” strange quark mass:

@ improved staggered fermions; most detailed: p4-action
extended to asqtad and hisq

# calculations have been performed on Ng X IN, lattices
Ny =32, 48, N, =4, 6, 8

# calculations with p4-action cover a wide quark mass range:
N:=4: 1/80< my/ms; < 2/5
= 75 MeV < m, < 320 MeV

= cVidence for O(N) scaling

expect O(2) rather than O(4) scaling with staggered

fermions at non-zero lattice spacing



Magnetic Equation of State

(2+1)-flavor QCD

chiral order parameter: O(2) vs. O(4)

— — o
Mb— T4 Z:t/hl/ﬁ Z - 1.2z

1.6 . . . . 200 [ gz 18 " m/m.=2/5 o 1
B=3.285 = My/h o 1/5 —o
O(4) 329 e 110 =
1.4 3.295 —& . 1/20 ®
1/8 3.30 150 + 1
My/h 3.3025 — o O(2) %gg ——
1.2 ¢ O(2) 3305 — & ] o —
3.3075 - ~
10 ) 331 =« 1.00 e
0.8 |
m,/m¢<1/20 0.50 r all masses
@
-6 1T1<0.08 G 5
04 1 1 | | T 000 I I I ] 1 1 | ] 1 !
-2 -1 0 1 2 5 4 3 2 4 0 1 2 3 4 5

p4-action: N2 x4 , N, =16, 32

S. Ejiri et al (BNL-Bielefeld), Phys. Rev. D80, 094505 (2009)
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Scaling analysis In (2+1)-flavor QCD

0(2) vs O(4) fits

ms (YY)
— 1/83d6
N, = 8 M, = ; =t/h'/P
T hotQCD prellmlnary
T | T T = T | T
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= T.. ta. hao = zn = h W. Unger, PhD thesis,
¢y 0 0 0 / 0 Bielefeld, September 2010

: " b T.(m;/m
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The curvature of the critical line

BNL-Bielefeld-GSI in preparation

+ QCD, chiral limit (u,d quarks only)
Pou = pd >0, pg = ps =0

A
T T (uq)z
1—l<,q —

T F-_ 9(4), 2nd order -—— Tc

~
~
~

~a tri—critical point

1st order 1 T ) (uq ) 2
— 1) — kg [ =2
T, T

\ superconductor scaling laws control

) > curvature of chiral transition
W, fewtimes nuclear L

matter density line for small ptq/T
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The curvature of the critical line

BNL-Bielefeld-GSI in preparation

+ "thermal” fluctuations of the order parameter

1 ([T 2
t=— ((——1) — Kq (&) ) , z =t/h/PO
to \ \ T T

2Kq
tol,

My, = h'?fg(z), xt = 0> My/8(pq/T)? =

0.07

R(B=1)/3B £/ (2)

-2k fa(z)

N.=8: m/mg=1/20 r—@¢—
N.=4: m/me=1/10 —g—
1/20 +—ie—

kg = 0.059 = 0.006

compare to freeze-out
curve.

F. Karsch,Jap-Dt workshop,, 2010



Chiral Transition and Freeze-out

e m-co 1 chiral phase transition curve:
0.8 L HRG LGT, m=0 | 5
g\ T J.Cleymans et. al. T
PN o e Ws)  _ 1 _ o.0066(7) (12
0.6 1 Tc T
0 | + O(uiy)
0.2 r . / ) . \
ug/T open issues:
" 1 2 3 4 5 6 7 s - continuum limit
_ _ L - strangeness
freeze-out curve in heavy |on2(:oII|S|ons. . conservation
T i,
(BB)  _ 1 o003 (B _ . (kB - non zero charge
T, T T
d
MB(\/ SNN) — J. Cleymans et al.,

1+ ey/sNN Phys.Rev. C73, 034905 (2006)

F. Karsch,Jap-Dt workshop,, 2010



Chiral Phase Transition and

Pseudo-critical temperature

+ thermodynamics In the vicinity of a critical point:

P _
T VT3

In Z(V,T) = h* T3 £, (t/h*/P%) + £.(V,T)

#+ critical behavior controlled by two relevant fields: t , h

@ all couplings that do not explicitly break chiral symmetry
contribute in leading order only to 't'

= ((F ) () e (5) e () )

1ml

ho mg

F. Karsch,Jap-Dt workshop,, 2010



Pseudo-critical temperature

¥ select observables that are sensitive to critical behavior In
the chiral limit

(magnetic) response functions:

_ o _ T O0ln Z
¥+ chiral susceptibility: (Y1) = v 5
my

Xm, — Xl,disc + 2Xl,con

Xm,l T (1 1/6—1

T2 — ng (ho h fX(Z) —|— atAT —|— b1
Xm,l —1/2
T2 ~ m, for T < T,

Xl m? Y for T=T, or T = Tpe

F. Karsch,Jap-Dt workshop,, 2010




Chiral susceptibility

hotQCD preliminary

¥ select observables that are sensitive to critical behavior in

the chiral limit

(magnetic) response functions:

@ chiral susceptibility: (1), =

T Oln Z

" 2
100 Xl,disc/T

80
60
40

20

T[MeV]

asqgtad

0
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Chiral susceptibility

hotQCD preliminary

@ closer to the continuum limit with the asqtad staggered
fermion action:

@ reduced taste symmetry violation with the highly improved
staggered action (hisq):

120

Xdisc/T2

100 | u |
ol BET et

S ad N =1 R A
60 | &H‘ } *aqt : _ my/ms = 1/27

EIJ
40 | 'Hﬂ_ 'DIIIE ) . Tpc — (164 T 6) MeV
20 | Ei.}.{' ' hotQCD preliminary
. _ EUE o B[Mev] (Lattice 2010)

120 140 160 180 200 220 240 260
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Chiral Phase Transition and

Pseudo-critical temperature

¥ scaling ansatz can be used to extract transition temperatures
from chiral condensates;

asqgtad action

chiral condensate chiral susceptibility
10 . . . . .
N,=8  m/mg=0.200,02) — | 450 tlt | .' ® o | asqtad :
O(d) -~ 400 | ¥y . N;=12,0.05 o
0.100, 0(2) —— A °

8,005 m

oY) J— 350  ©
* 0.1

neter free _ |

250
200
150 F

M
o - N w H ()] » ~ (o) ©
T T T T T | I— T

e 100 | . ]

o b hotQCD preliminary;

o TIMeVl . . . 5

T 140 150 160 170 180 190 200 210 220

consistent with Tc determination from susceptibility peaks



Quark number susceptibility

hotQCD preliminary

¥ not a response function, dominated by regular contributions
Xq 1 ©6°IlnZ l
p— q = S
T2 VT3 0(ug/T)? "’ " (T, = T.(my = 0))

T —T.|'™“
Xaq T—T)+ A, |—=° 0
> ~cot+a(l—T.)+ Ax , o<
T Te
0.8 T T T T T T
] @
0.7 x/T o2 "
7t . n
" ] - Beo
06 F / : 0.8 e
m : a
05} .
. ] 06 ﬁ] HISQ:N.=8 — =
asqtad: N =12 —m=— | " NT_G =
04 1 [T Nr=8 =, ] [j S T 1
_ /' m G cont. extr. - - - - ] 04 | L]
03 ‘ E HISQ:N =8 —m— |
02 * KN 5 N’C=6 —a— _ q] . | |
f me cont. extr. 5 0271 hotQCD preliminary
0.1t L stout: continuum % - ' Q P y
B ]
Lt T L Tvew
140 160 180 200 220 240 260 120 140 160 180 200 220 240 260 280
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Quark number susceptibility

hotQCD preliminary

¥ not a response function, dominated by regular contributions
Xq 1 ©6°IlnZ

T2 ~ VT3 O(pg/T)2 1="% 8 (Te = Te.(m; = 0))

Xq T _ Tc 1l—«o

AL AN T—-T.)+ A
2~ o+ el ) + At T

, <0

0.

"SR 1

2 | | | | ] I2
07 -XS/T = ] 09t x/T
: - : . Beo e
0.6 | /' : 08 N LI .
0 0.7 | [ ° ]
05 | : 06 | } . |
tad: N.=12 —m— | ]
04 asqa T . 05 L L ([ J S '—.—'_.
s N’E=8 —B— ] [ ] S
03 L Al - cont. extr. - - - - ] 04} § o
) ’ [ﬁ HISQ: N’C=8 —— 03 + °
0.2 t * KN - N’C=6 —— _ 02 i | |
% me cont. extr. 5 < ¢ hotQCD preliminary:
0.1 L stout: continuum i 01t i ° Q p y
0 1 N 1 N 1 N | X X ,T [MeV]E 0 .. 1 N | . | N 1 N 1 . | N T[Me\l/] E
140 160 180 200 220 240 260 120 140 160 180 200 220 240 260 280
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Polyakov Loop Susceptibility

¥ not a response function, no direct relation to critical behavior

o3 &
ILren(T) E
0.3 | %
| HISQ,N =8 —=— }fﬂ
025 | HISQ, N =6 —3— @
 asqtad, N “12 e
0o | asqtad, N =8 —o— @
B | stout cont —K— >I@®
0.15 | Eﬁ‘éi’
0.1} x ?@
0.05 | -
[ * ¥ X . .
o X T [MeV] hotQCD preliminary
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Conclusions

@ LGT calculations start to produce gquantitative predictions
on QCD thermodynamics that provide input to the interpretation
of heavy ion experiments

EoS, Tc, transport coefficients, spectral functions,
phase boundary, charge fluctuations,.....

@ How sensitive Is the QCD transition with physical quark
masses to universal properties at the chiral phase transition?
@ How does the phase transition vary with chemical potentials?

@ Use staggered fermion action with reduced taste violation
(HISQ) with physical guark masses close to the cont. limit

@ Use chiral fermion formulations (DWF) in thermodynamic
calculations

F. Karsch,Jap-Dt workshop,, 2010
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