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Motivation

Ts 2T, pQGP

T=2T,

CIOL

TwT.sQGP
T=TC

@e® @O

T<T. Hadronic phase

Hadronic Thermometer for the QGP

Matsui & Satz ('86): Complete melting of J/{ at T=T,

Convenient Separation of Scales

Large mass allows a non-relativistic description:

v P
—?:Q <1 or (_QQ "{]\

Temperatures are comparatively small (at least for bb )

Jmed 4 (m < 1)
mQQ mqQ T=0

Derive an effective Schrodinger equation for Heavy
Quarkonium at finite temperature

At m=co separation distance of constituents is external parameter
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Previous Studies

Hard Thermal Loop Laine et al. JHEP 0703:054,2007

Real-time formulation based on the forward correlator

Resummed perturbation theory: applies at very high T

Quarkonia is transient:  V(R) = Vps(R) +1Vip(R)

Ts 2T.pQGP
T=2T,
Ad-hoc identification with Free Energies in Coulomb Gauge
® _
o B V(R) = AFqq(R) = —B~"log[(P(RIP!(R))] € R
Challenges: Gauge dependence, Entropy contributions
TwT.sQGP
T=T,
T=0 NRQCD & Brambilla et al. Rev.Mod.Phys. 77 (*05)
@O® Expansion in 1/m (Minkowski time):
 m ig n
D Vineoo(R) = lim ~log <Tr(P|;|exp[ - L dx, A [x]])>
. o ig 0
T<T.Hadronic phase Remember: P(t) = explimtlexp [? Ith (t)]
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Previous Studies Il

Spectral functions from LQCD Asakawa, Hatsuda PRL 92 012001,(‘04)

Extract spectral functions directly from non-perturbative
Lattice QCD simulations at any temperature

Challenging but well understood: Maximum Entropy Method

Ts 2T.pQGP
Asakawa, Hatsuda: Prog.Part.Nucl.Phys.46:459,(‘01);

T=2T, :
Unexpected: J/Y seems to survive up to T > 1.6T,

Free Energies predict melting at 1.2 T,

O

Combine the systematic expansion of the effective theory
TwT.sQGP with the non-perturbative power of Lattice QCD at T>0

T=T, '

We propose a gauge invariant and non-perturbative definition

@ of the static proper in-medium heavy quark potential based
on the thermal Wilson loop.

Numerical results for the proper potential
T<T. Hadronic phase
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Starting point

The point-split mesic correlator t A YR YD(X-RY) J(x,t)
Q@ @

Gamma matrix

M (x,) = BT Wi, y b (v) Rt 0
==

spatial Wilson line

m < T: thermal fluctuations cannot excite QQbar pairs
Imaginary time boundary condition becomes irrelevant for QQbar

Quantum mechanical description becomes possible: Schrodinger equation

Only naturally gauge invariant quantity: current - current correlator (Dilepton production)

2
[— 0y + ; ;Til + vtR]] D”(r,t,R, i) =0 =) r.'%'i,‘o D7 (r,R,t,t') = (J(x,t)]7(0,1))
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From first principles QCD

Reduce the degrees of freedom for the heavy fermions
1 - {- = f. .
Foldy-Tani-Wouthuysen Transform: Expansion up to inverse rest mass 1/mc?

1 7 [¢s o O : 1
LnrQep = _ZF*WFWV + [(I’YODO —me) + ﬁ ( 0‘ o ) B* + mnf]ll’

Path integral measure is unchanged
Dfaen = | PMed) [ijw,ﬂ:]rusrwwabwzdw& (ng(ymg[xwg(xqewmmw-ul giSwtlArb
No coupling of upper and lower components of Dirac 4-spinor -> No creation/annihilation

Heavy fermions do not appear in virtual loops: Heavy quark determinant can be neglected

2x2 sub matrix

Do = | PIMedIT W(x, )G 8(y,u'JBW/ ¥, y")5(x,¥)
v .

NRQCD heavy quark greens function (2x2)

1SMed Temperature
dependence

€
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QM path integral picture

Express Greens functions as quantum mechanical path integral Barchielli et. al. PRB296 625, 1988

i9,8(x,%') = [ﬁ ( — iV — %A(x))z +gA%(x) — %atBi‘[x]]S[x,x'] & Sx)_p = 53 (x —x)
4
x' 1 1 2
S(x,¥) = | Dlz,piTesp[i | at(pltiatt) - 7 (plt) - 2AGz(0),1)) — gA(2(t], 1)+ 0B alt) 1)
Combine the paths from both constituents:
time

a

' ’
t X® oy
t

D” =exp[—2imc?t] J' Dizy, pil j' Dizp, palexp H ds ) (pt[s)zu,(s] —~ %Pt(s)z)] X
i

1 i ' i
(ﬁTr [Pc exp [% i dx" A, (x)|+ Z % L a.xucri'Fiu[x)]] >
V 3 A X O (o] y

This is not just the Wilson loop: fluctuating paths X,V,Z

z,(s)

To obtain a potential term in the time Hamiltonian operator for D> we need:

(Tr[exp[%f\ -+ L %F] I) =exp [‘i.r’ ds U(zq(s),z2(s),p1 (s),pz(s],s)]

t
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The proper static potential

t’ i
Expansion in the momenta: I dsu =J d 1 Pn(s) .
Barchielli et. al. PRB296 625, 1988 t (z(s),p(s),s) " s( u(z!3]|p=n + W-n.(Z, S)I.p=o me + )

p t’
Formi —: f{log <%Tr [Pcmcp[%§ dx"Au(x)]] >| =J dsu(R,s)]  time
c A

1 PL2a=g 7t @ gy
Real-time thermal Wilson loop D N
3 N
Use the spectral function (Fourier transform) to obtain: N v
— _ ] —iwt x® Oy
u(R,t) =1 aslog[WL(s,R]] L:t = Tdwe ®tpg(w, ) Idwe w pol{w,R) =
The notion of a static potential is valid if the peak structure of p(w,R) is well defined:
= —iwrt ! - —{t p(w)
I dwwe *“**po(w,R) =V(R]r dwe "“polw,R)
B - o= Im[V..]
Analytically solvable cases: Breit Wigner and Gaussian
BW .
= VL' (R) = wo(R) +1lp(R)
GA(py _ .2 >
= VZA(R) = wo(R) +1ilE(R) | A wysRelv_] W
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At finite momentum

There is not yet a kinetic term, since the paths collapsed to a straight line
i9,D(t,R) = [2mc2 + ReViy (R) +ilmVie [R}] D> (t,R)  at o(#)

t'

t’ i
Going to next order in p: L ds U(z(s), p(s),s) =j ds(u(z,s)lp=o + wi;[z,s]|P=oPn_(”] + .. )

t

Note that position and momentum are independent in Hamiltonian formalism

T t ord ﬂo(T[‘P 96 axa, ])I =0
o current order: g ¥\ Perrs [t)exp[ % x ,[x]] o

Field independent part of the path integral gives kinetic term

time
The final result at O(l) "1 P’
m
z,(s)
pZ 1 ZZ(S)
9D (¢,R) = [2mc? + P 4+ ReVo (R) +ilmViy (R)] D (£,R) .‘9(“—1).
X y
X,\zZ

A dynamical Schrodinger equation for the proper complex heavy quark potential
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Spetral function from LQCD

Definition of the potential requires knowledge about the Wilson Loop spectral function

Spectral function connects Euclidean and Minkowski time

WLm(—iT,R) = J' dw e~ “"p(w, R) = WLg (T, R) » simulate in LQCD

Extraction via MEM

Exploring the proper potential

A A
P p
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Numerical Results: T=0.78T,

Confinement region:

0.4

—_
o

29 ' ' ' ' . &l o I N R=4
i r R=2 x 7 L 2 H=5 o -
0.78T¢ i R=3 « 035 * R
. e °1 ] os} % Bz oo ]
2.0 "’ E i 7t . i ) g E:g
> ,v i el ) R i
S 0** g s 02 * * :
= 15 . & ' w
o ® 4 *
E e® ) 0.15 : "'ﬂ%‘ :
i o 17 A | o1} 4§
1.0 e VCGsing(R) o 1t % i 1 0.05 »ig
Re[Viyem(R)] = " * x ﬁz N F 7
05 . . . . . . . 081216 2 24 1216 2 24283236
0 01 02 03 04 05 06 07 ® [GeV] ® [GeV]
R [fm]
4 . .
a5 | T=0.78T,
- T Im[V(R)] — | Real Part coincides with the potential from Free Energies
8 25 f T in Coulomb Gauge
g 2
> . . .
E 7 1 Imaginary part small: possibly artifact from the MEM
1 L
05 t
0 - = - = :
0 0.1 02 03 04 05 06
R [fm]
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Numerical Results T=2.33T,

Deconfinement region: still s(Q)GP

8 : - : : : , : uenched QCD Simulations

| T=2.33T¢,
CG
s ° r g o ] NX=2B0NT=421B78] §,-3.2108
S 5t . W FPAng(R) s ] _ -
= | MEM NT32 BWM —des &’t(:'iél}t—'m?ﬁ?{ﬁnd N,=321.=(0,7]
S 4t 2% MEMNTIZBWM a N¢= 3500 HB:OR = 1:5 N, . =200
T =% £ d Prior: my 1/{w-w+1)

3t At :
Ag#“——_ mgiﬁewm&m%ﬁiwie-ﬁ
S i Ax = 4At = 0.04fm

Nc=1100 HB:OR = 1:5 N,,,,=200

0 01 02 03 04 05 06 07 08

R [fm]
6 T
T=2.33T¢
5|
IM[V(R)] NT12 —=— : Real Part much steeper than Free Energies in Coulomb Gauge
S 4} IM[V(R)] NT32 +--hees '
& Imaginary part appears to be finite
= 3
< Width much rather resembles a Gaussian, not Breit-Wigner
E 2t I
e = £ Only solving the Schrodinger equation with both real and
Tr . - | imaginary part can tell us about the survival of heavy
L= " | J quarkonia
0 0.1 0.2 0.3 0.4
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Conclusion

Present approaches toward an in-medium potential

Either perturbative (HTL) or plagued by ambiguities (free energies, internal energies)

Proper heavy quark potential at finite T:
Separation of scales used to derive effective theory for Heavy Quarks: NRQCD

Inthe mt — limit: Spectral function of the thermal Wilson Loop determines the
applicability of a potential picture, i.e. existence of V_(R)

In the most naive case: peak position corresponds to real part, peak width to imaginary part of V(R)

Numerical results for purely gluonic medium:

Below T.: Proper potential coincides with potential from free energies in Coulomb Gauge

Above T.: Real part of the potential much steeper than free energies potential and imaginary part
increases significantly

Future work:

Light fermions in the medium: Full QCD simulations

Derivation of the 1/m? corrections, the highest possible order for the naive potential picture

Solving the full time-dependent Schddinger equation
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Direct Spectral properties

How to extract spectral information from Euclidean Lattice data: Maximum Entropy Method

= D(t)
Ju(%,T) = Pp(x)y b (x) } ) A
D (%,7) = Tr[e PR T (%, 1)1L(0,0)] /2
o0 —Tw (f—Tiw N
DPR1)=| dw&—FE o(R.w) roo
Q ] —€ Bw > P'c
v v X,Y,Z B
0(10) 0(1000) F
0| (a) Quenched QCD T=078Tc -===
Il posed problem: Cannot use usual x? fitting T-126Tc -
1.5+
Bayes Theorem can help: P[p|Dh] = PIDlphiPlp[hl ' _5
PIDIh] ost /)
Z (b) IQuenclhed Q:CD T;1.?0Tcl
thxp[— —Z (D['n.] —-D p['rt]) i (D(*ri]— p[fr,]) sl I:;i e
5 ! T=233Tc ===
Usual x? flttlng term gp[(ﬂnh] =0 !
x Exp [cx.J:o {p[w] — hi{w) — p[w][.og(%)}dw] 0o s 0 15 %0 22[663\2

Sh [ Ent k . K led licit Asakawa, Hatsuda, Nakahara: Prog.Part.Nucl.Phys.46:459-508,2001
annon Janes ENtropy, Makes prior knowledge explici see also: Nickel, Annals Phys.322:1949-1960,2007
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Heavy Quark Potential Models

o—e
Phenomenological expectations: X(R)
Confinement: Linear rising below T, o %
L
String breaking with dynamical fermions R
. ( J
Screening above T, due to free color charges 0@
.
T=Oresult: V(R)=— lim —Log [WL[T, R]] e.g. Brown, Weisberger PRD20:3239,1979.
T00 T
Ad-hoc identification of potentials (No Schrodinger equation was derived)
1
1 1 Trpy _ 1 aF' (R)
F(R) = —ELog[Trn’(R)]Trnﬂ(on] FI(R) = —gLog [TrPRIP!(0)]] WIR)=F(R]—-T ( 3T
" FEeT) [Gev] T ._ﬂ.-.,-ﬂ.i';ﬁﬁ% 1 U, MeV]
08 [N=2+1 4 108} e e 1 1500 Fp -
o =
06 .l'. 41 06 J
04  @a* 1 04} AAA'W"' . 1 1000 t
ey 3 oo TR IR
02 .= 082 w - 1 02F .= 082 =
089 e 089 e
| A A
02/ lgg . {02} 100+
o4 195 —=— ] 04 -
06 329~ | 067 329 r [fm] 1.89T —
08 ‘ rlfm] . 0.8 . . rlfm] . : ‘ :
0 05 1 1.5 2 0 05 1 15 2 0 05 ! 19 2
Petreczky, arXiv:1001.5284v2 Satz, J. Phys. G 36 (2009) 064011
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