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Motivation and Overview

Analyzing the equation of state ,
in the (T, ug)-plane from first principles

—> determination of the phase diagram
—> understanding underling mechanism of the transition
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Overview:

* Lattice QCD at high temperature:

e getting lattice errors under control
e continuum extrapolation of Tc

* Lattice QCD at high temperature and nonzero density
e ratios of moments of baryon number fluctuations

e baryon number fluctuations at freeze-out
e the radius of convergence




The Taylor.expansion method

* Taylor-expansion of the pressure

D L 1 . u,d,s Hu z Hd
ﬁ = ys In Z(Va T pros s /"’3) - zz;):kz Cigk (?) <?

e calculate Taylor coefficients at fixed temperature
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e expansion coefficients reflect fluctuations of various quantum numbers

generalized susceptibilities

1

2lcy = x5 = v <<X2> — (X)z) quadratic fluctuations
1

4lc) = xF = v (<X4> -3 <X2>2) quartic fluctuations

qu,d,s,B,Q,S,---




The Taylor.expansion method

* formulate all operators in terms of space-time, color (and spin) traces:
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* evaluate all traces by noisy estimators:
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with IN random vectors, satisfying Jim N0 g = i

n=1

* construct expansion coefficients from D, Dg, D; , with unbiased estimators
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Allton et al., Phys.Rev.D66:074507,2002.




Lattice QCD on GPU’s

e use effective implementation of the CG-solver
for p4-improved staggered fermions on GPU’s

Speedup
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courtesy O. Kaczmarek

*use CUDA by NVIDIA

* most important
optimization: obtain
coalesced memory access by
a spacial storage pattern of
the fields (color index is the
most outer index)

e see also:

* Egri et al., Comput.Phys.Commun.
177:631-639,2007.

* Clark, PoS LAT2009:003,2009.
* Bonati et al., PoS(Lattice 2010)324




Baryon number fluctuations

Analyzing the critical behavior:

scaling field (chiral limit):
1 (T—Tc <u3>2)
t= — P
to 1. T
free energy:
f = AL|t|*”® 4+ regular

critical exponent:
—0.15 < a < —0.11

/T

C
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—12A4(2 — a)(1 — a)k? |t|”® + regular > kink (chiral limit)

F12044(2 — a)(1 — a)(—a)k® |t| 7~ 4+ regular —  divergent
(chiral limit)
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Baryon number fluctuations

hadron resonance gas

InZ(T,V, NB?NS&/JJQ) — Z InZ,,,(T,V, HB?HS?NQ)
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B
volume — So = 52 tanh(up/T)
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effects cancel




Baryon number fluctuations

e Kurtosis times variance

n=2+1, m_=220 MeV —=—
n=2, m =770 MeV —=a—
Resonance gas

filled: nt=4
open: nt=6

0.8 0.9 1 : 1.2
red: CS,|.Phys.G35 (2008) 104093.
blue: Allton et all., Phys. Rev. D71 (2005) 054508.

*sensitive to relevant quantum
numbers in the medium

e divergent at the critical point
(Z(2) Universality class: a > 0)




Baryon number fluctuations

e sixth order fluctuations

T/T, |

C
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[CS, arXiv:1007.5164]

*sensitive to relevant quantum
numbers in the medium
e divergent at the critical point




Baryon number fluctuations

e sixth order fluctuations

- B, B |
X4/X2 —

B, B
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HRG ——
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*sensitive to relevant quantum
numbers in the medium
e divergent at the critical point

Use parametrization of Freeze-

=> out curve to connect to STAR

measurements of net-proton
number

T(ug) = 0.166 GeV
—0.139 GeV~'u%

—0.053 GeV °u%

1.308 GeV

np(Vs) =7 10.273 GeV~1/5

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]




Hadronic fluctuations
at up > 0 (us = pg = 0)

baryon number baryon number - strangeness
fluctuations strangeness correlations fluctuations
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Cps =

— LO introduces a peak in the fluctuations/correlations,
NLO shifts the peak towards smaller temperatures

—> truncation errors become large at ug/T 2> 1.5




Hadronic fluctuations
at up > 0 (us = pg = 0)

Taylor expansion of ratios:

* use parametrization of the freeze-out line to
obtain /T as function of 4/s

* use multi-histogram re-weighting to interpolate
between temperatures

* caution: neglecting g, s dependence




Lattice vs. HRG:
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[Karsch, Redlich, arXiv:1007.2581] B 00
[STAR data: Aggarwal et al, PRL (2010) 022302] [CS, arXiv:1007.5164]

* net-proton number fluctuations e fluctuations increase for small v/s

can be described by the HRG . . .
* sensitive to truncation of the series

solid lines: pg 7 0, ps 7 0 due to close radius of convergence
dashed lines: ug =0, us = 0




Lattice vs. HRG:
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* net-proton number fluctuations e fluctuations increase for small Vs

can be described by the HRG . . .
* sensitive to truncation of the series

solid lines: pg 7 0, ps 7 0 due to close radius of convergence
dashed lines: ug =0, us = 0
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The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - - -

* determine the radius of convergence at 8

this temperature -  CEP

all coefficients
positive:
singularity
on the real

axis! //)/

T/T

C

I | !
—CEb| Ry . 9 095 1 105 1.1
TCEP [CS, arXiv:1007.5164]

TCEP
\/Cn/cn—|—2

first non-trivial estimate of TCEP by csg I;
- . CED im p,
second non-trivial estimate of T by ci10 n— 0o
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The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
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* radius of convergence is consistent
with critical line in the chiral limit
first non-trivial estimate of TCEP by cg (for determination of critical line

second non-trivial estimate of T<"" by c1o see talk by F. Karsch)




Summary

e We have calculated higher order baryonic fluctuations, which are
more and more sensitive to the critical behavior of QCD (in the
chrial limit and close to the critical point

e Ratios of baryonic susceptibilities are sensitive to the relevant
degrees of freedom but are rather independent on the spectrum
and volume. For Low temperatures the lattice data can be explained
by the HRG model.

=P rcsults need to be confirmed in the continuum limit

e STAR data on net-proton fluctuations can be described the lattice
data (and the HRG model) for /s > (10 — 20) GeV

e Estimates of the radius of convergence are consistent with the
critical line in the chiral limit as determined from a fit of a mixed
chiral and light quark susceptibility to the corresponding universal
scaling function (see talk by F. Karsch).

e 8th order fluctuations are necessary to obtain a first nontrivial
estimate of the critical point.




