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Overview:

★ Lattice QCD at high temperature:
• getting lattice errors under control

• continuum extrapolation of  Tc
µ
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Overview:

★ Lattice QCD at high temperature:
• getting lattice errors under control

• continuum extrapolation of  Tc

★ Lattice QCD at high temperature and nonzero density
• ratios of  moments of  baryon number fluctuations

• baryon number fluctuations at freeze-out

• the radius of  convergence
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•Taylor-expansion of the pressure 

•no sign-problem: 
all simulations at  µ = 0

cu,d,s
i,j,k ≡

1
i!j!k!

1
V T 3

·
∂i∂j∂k ln Z

∂(µu

T
)i∂(µd

T
)j∂(µs

T
)k

∣∣∣∣∣
µu,d,s=0

•calculate Taylor coefficients at fixed temperature 

5The Taylor expansion method

p

T 4
=

1
V T 3

ln Z(V, T, µu, µd, µs) =
∑

i,j,k

cu,d,s
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•expansion coefficients reflect fluctuations of various quantum numbers 

2!cX
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〉
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)

4!cX
4 = χX

4 =
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V T 3
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X4

〉
− 3

〈
X2

〉2
)

quadratic fluctuations

quartic fluctuations

X = u, d, s, B, Q, S, · · ·

generalized susceptibilities
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• evaluate all traces by noisy estimators:

∂(ln det M)
∂µ

= D1 = Tr
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• construct expansion coefficients from                        with unbiased estimators Du
n, Dd

n, Ds
n,

• formulate all operators in terms of space-time, color (and spin) traces: 

cu,d,s
2,0,0 =

1
2

Nτ

N3
σ

(〈
Du

2

〉
+

〈(
Du

1

)2〉)

Allton et al., Phys.Rev.D66:074507,2002.

The Taylor expansion method



7Lattice QCD on GPU’s

•use effective implementation of the CG-solver 
for p4-improved staggered fermions on GPU’s 
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•use CUDA by NVIDIA

•most important 
optimization: obtain 
coalesced memory access by 
a spacial storage pattern of 
the fields (color index is the 
most outer index)

•see also:

• Bonati et al., PoS(Lattice 2010)324

• Egri et al., Comput.Phys.Commun.
177:631-639,2007.

• Clark, PoS LAT2009:003,2009.

courtesy O. Kaczmarek



8Baryon number fluctuations
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−0.15 < α < −0.11
critical exponent:

163 × 4, mq = ms/10 Analyzing the critical behavior:
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GPU point, 4500 independent 
configuratons, 1800 random vectors each



ln Z(T, V, µB, µS, µQ) =
∑

i∈hadrons

ln Zmi(T, V, µB, µS, µQ)

∑

i∈mesons

ln ZB
mi

(T, V, µS, µQ) +
∑

i∈baryons

ln ZF
mi

(T, V, µB, µS, µQ)

baryons:

pi

T 4
=

di

π2

(
mi

T

)2 ∞∑

l=1

(+1)l+1l−2K2(lmi/T ) cosh(lSiµS/T + lQiµQ/T )

pi

T 4
=

di
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(
mi

T

)2 ∞∑
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mesons:

hadron resonance gas

Baryon number fluctuations 10

Boltzmann 
approximation

ratios are 
independent of 
spectrum and 

volume

3 ratios:
χB

4

χB
2

= κσ2 =
B4

B2
= 1

χB
2

χB
1

= σ2/NB =
B2

B1
coth(µB/T )

χB
3

χB
2

= Sσ =
B3

B2
tanh(µB/T )

possibly large 
parts of cut-off 
effects cancel

→
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•sensitive to relevant quantum 
numbers in the medium

•divergent at the critical point 

•Kurtosis times variance

α > 0(Z(2) Universality class:             )
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•sixth order fluctuations
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•sensitive to relevant quantum 
numbers in the medium

•divergent at the critical point 
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Use parametrization of Freeze-
out curve to connect to STAR 
measurements of net-proton 
number

T (µB) = 0.166 GeV
−0.139 GeV−1µ2

B

−0.053 GeV−3µ4
B

µB(
√

s) =
1.308 GeV

1 + 0.273 GeV −1√
s

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]

•sixth order fluctuations
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•sensitive to relevant quantum 
numbers in the medium

•divergent at the critical point 
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baryon number - 
strangeness correlations

χB = 2cB
2 + 12cB

4

(
µB

T

)2

+ · · · χS = 2cB,S
0,2 + 2cB,S

2,2

(
µB

T

)2

+ · · ·

CBS =
cB,S
1,1 + 3cB,S

3,1

(µB

T

)2 + · · ·
χS(µB

T
)

truncation errors become large at →
LO introduces a peak in the fluctuations/correlations, 
NLO shifts the peak towards smaller temperatures 

→
µB/T ! 1.5
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at µB > 0 (µS = µQ = 0)

χ2

χ1
=

( µ
T

)−1 + 4c4

c2

( µ
T

)1 + (−8c2
4

c2
2

+ 12c6
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)
( µ

T

)3 + O
[( µ

T

)5]

χ3

χ2
= 12c4
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( µ
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+ 60c6
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( µ

T
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[( µ

T

)5]

χ4

χ2
= 12c4

c2
+ (−72c2

4

c2
2

+ 180c6

c2
)
( µ

T

)2 + O
[( µ

T

)4]

Taylor expansion of ratios:

•use parametrization of the freeze-out line to 
obtain          as function of  

•use multi-histogram re-weighting to interpolate 
between temperatures

•caution: neglecting              dependence 

√
sµ/T

µQ, µS
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HRG vs. Experiment:

•net-proton number fluctuations 
can be described by the HRG

Lattice vs. HRG:

•fluctuations increase for small 
√

s

•sensitive to truncation of the series 
due to close radius of convergence 
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Baryonic fluctuations at freeze-out

solid lines: 
dashed lines: 

µQ != 0, µS != 0
µQ = 0, µS = 0
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Baryonic fluctuations at freeze-out

•sensitive to truncation of the series 
due to close radius of convergence 

•net-proton number fluctuations 
can be described by the HRG
solid lines: 
dashed lines: 
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method for locating of the CEP:

• determine largest temperature where all 
coefficients are positive

• determine the radius of convergence at 
this temperature   
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The critical endpoint 19
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freeze-out
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critical line

•radius of convergence is consistent 
with critical line in the chiral limit 
(for determination of critical line 
see talk by F. Karsch)



22Summary 

results need to be confirmed in the continuum limit

• We have calculated higher order baryonic fluctuations, which are 
more and more sensitive to the critical behavior of  QCD (in the 
chrial limit and close to the critical point

• Ratios of  baryonic susceptibilities are sensitive to the relevant 
degrees of  freedom but are rather independent on the spectrum 
and volume. For Low temperatures the lattice data can be explained 
by the HRG model.

• STAR data on net-proton fluctuations can be described the lattice 
data (and the HRG model) for

• Estimates of  the radius of  convergence are consistent with the 
critical line in the chiral limit as determined from a fit of  a mixed 
chiral and light quark susceptibility to the corresponding universal 
scaling function (see talk by F. Karsch).

• 8th order fluctuations are necessary to obtain a first nontrivial 
estimate of  the critical point.

√
s ! (10 − 20) GeV


