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Group of 0-form symmetry is Zy (1/4)

Large gauge invariance of fv a A da is crucial

1. Symmetry group seems continuous, i.e. U(1) because conserved current exists

Jgs = —v> xde — Dzanda, djgs=0

2

2. However, the conserved current is not gauge invariant under a — a + dA.

3. The integral of the current, el@0 Jy ies with eico ¢ U(1), seems gauge invariant,

since the gauge transf. is a total derivative.
4. However, the integral is not large gauge invariant.

Further, the shift symmetry of axion should be broken to Zp by chiral anomaly

from UV viewpoint.
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Group of 0-form symmetry is Zy (2/4)
In the following, we consider the topological unitary operator

Up(e'®0,V) = e o v w?xdpt iz anda)
V) =

)

and show that the large gauge invariance of Uy(e?®0, V) requires e'®0 € Zy .

Note: It is essentially the same as quantization of the level of Chern-Simons term in
(2 + 1) dim. [Henneaux & Teitelboim '86]

. N
. . . . —iag s Ad
1. Since d¢ is gauge invariant, we focus on the term e~ "“0 82 Jva .
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Group of 0-form symmetry is Zy (2/4)
In the following, we consider the topological unitary operator

UO (61'&0 , V) _ —zag fv(v *dd>+ s aAda)

)

and show that the large gauge invariance of Uy(e?®0, V) requires e'®0 € Zy .

Note: It is essentially the same as quantization of the level of Chern-Simons term in

(2 + 1) dim. [Henneaux & Teitelboim '86]
. . . . 7iaoi /v, aAda
1. Since d¢ is gauge invariant, we focus on the term e 8x2 JV .
2.

In order to make the integrand be manifestly gauge invariant, we define

: N
67“10 8 jV anda — e—zoz[) Sn2 fQV daNda

on a 4d space 2y satisfying 0Q2y = V.
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Group of 0-form symmetry is Zy (3/4)

3. However, we have chosen a redundant space 2y,, which may be replaced by

another 4d space ],

4. The redundancy of the choice is absent if

—iag N T —iag L danda i N
o0 s ij danda —¢ 052 fQ’V , e e 005y Jq danda -1
where Q = Qy, — ], is a closed 4d space. (¢ sstisfies 92 = v — v = 0)
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Group of 0-form symmetry is Zy (4/4)

5. Since Q is closed subspace 92 = 0, the Dirac quantization condition requires

JodaAda €2 (2m)%Z

6. Therefore, we have the condition ag € QW“Z, which means
el ¢ ZyN-

[back]
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Derivation of 0-form transformation 1/4

[ We evaluate the correlation function ]

(Wo(emine/ ¥, V)it Py = [ Dlg, aleiSt IRy dsatio(P)

\/

/

’P

%

Let us integrate out jy3 = —v2 % d¢p — 2 aAda

. local operators — spacetime |ntegra|
o ci0(P) = i [34(P)  where 84(P) = 6%z — P)da® A --- A daP
* [vies = Jaqy, des = Jq, dies = [ digzdo(Q),
where 2y, is a 4d subspace satisfying 0Q2y =V,
fQ (x —y)dy® A+ Ady?.
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Derivation of 0-form transformation 2/4

2. Action + symmetry generator can be rewritten by

Completing the square

27

O / dj360()

27 2

= sl - 2o el (F52)" [ 8004800

\

Here, we have defined/used
® 51(V) = HELZ 4z [ 6% (x — y)dyY A dyP A dy”
® dép(Q2y) = 61(002y) = 61(V)
® [w3 Addo(Qy) = [ dwzdo(Qy) = va dws = [4

0, w3 = Jyws = [w3Ad1(V)

2 IN: b N
S[¢, a] = 7‘/ <%(1¢ A wdg + 212 da A xda — 822 $da A du>, Gz = —v? s dp — S:Z a A da
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Derivation of 0-form transformation 3/4

2mng
N

3. By the redefinition ¢ — 60(Q2y) — ¢, we have

[ Integrating out Uy

27

<U0(827rin¢/N’ V)ei¢(’P)> — /D[d): a]eiS[d)f ]\7]% 50(Q2y),al+i [ ¢64(P)

= R [ 50(0)84(P) (46 (P)y.

(f 51(V) A %81 (V) has been regularized by local counter term.)

What is the phase factor [ 60(£2y)d4(P)?
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Derivation of 0-form transformation 4/4

[ Linking number ]

J80()34(P) = [, 64(P) = Link (V,P) € Z

Intersection of 2y, and P = link of V and P

Therefore, we obtain

[ Zy 0-form transformation ]

(Uo(e2ime/N | 1)gis(P)y — 62“;"4’ Link (V,P) (¢i0(P))

[back]
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Derivation of 1-form transformation 1/4

f We evaluate the correlation function ]

<U1E(627rina/N,S)ei Je a> _ /D[¢, a]eis.t,-%@ Jsda2+ifca

2
“\‘1\//,/?{/ L//{‘ ot

QN
N

©

Let us integrate out ju2 = e% * da — %qﬂa

1. local operators — spacetime integral:
o eilca = ¢ifands(©) where §5(C) = BT g A - Ada? [, 5 — y)dyt

® fsjaQ = favs ja2 = fvs djaQ = fdjaQ /\51(Vs),

where Vs is a 3d subspace satisfying 0Vs = S.
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Derivation of 1-form transformation 2/4

2. Action + symmetry generator can be rewritten by

Completing the square

27

S[¢,a) + 2208 / djar A 51(Vs)

= Slg.a+ TRea Vel o (50)” [ 0a(8) A xa(S)

Here, we have defined/used

® 55(S) = %daf"’ A dx? fS 54(;16 — y)dy* A dy”

® d61(Vs) = —02(0Vs) = —62(S)
® — [waAds1(Vs) = [dwa A1 (Vs) = fVS dwo = ff)VS wy = [gwa = [wa Ab2(S)
. 2 . .
Sl¢p,a] = — / (%(14) A xde + 212 da A xda — 84‘\‘2 pda A du>, Ja2 = —5 *da — 4*‘\2 éda
v e ™ e s
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Derivation of 1-form transformation 3/4

3. By the redefinition a + 27;\7;"’ 61(Vs) — a, we have

( Integrating out Ui ]

(U (e2mino/N ))eid(P)) /D zs¢a+ 61 (Vs)]+i f ands(C)

_ 27r7.n0~ f&S(C)/\él(Vs)< ife @y,

55(S) A %85 (S) has been regularized by local counter term
. 2 2

What is the phase factor [ 63(C) A 61(Vs)?
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Derivation of 1-form transformation 4/4

[ Linking number ]

[83(P)AS61(Vs) = fvs §5(C) = Link (S,C) € Z

Intersection of Vs and C = link of S and C

Therefore, we obtain

( Zn 1-form transformation ]

<U1E(627rina/N,$)ei Je ay = eZw}z'Vna Link (S,C) (eifc )

[back]
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Correlation function (Uy(e2™ /N VYU g (e?™ /N | S))

We evaluate

2ming

2min
<U0(€27rin¢/N,V)UlE(GQWin'l/N,S» _ /D[¢7 a]eis[¢’a]+T¢ fV Je3+—x fs Ja2

® Integrating out jgs3 can be done by the shift ¢ — ¢ + 27;\7;‘1’ 00(2y)

® U (e2™"a/N S) is shifted as
UlE(ezﬂ'ina/N’S) N UIE(BQWina/N’S)efm#_ﬁ fs 50(Qy)da

— []1E(62‘1rina/N7S)[Jll\/[(67271'75'r7,¢na/N7 Qy N S)

[back]

2ming /N

L wda— $da

p N
Uqp (e -
LE{ An2
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Correlation function (Ui (e2™e/N S)U g (e2 /N | S'))

We evaluate

27 2m

Uil N, S)Up(m N, 8) = [ Dl alet ST s ot SR S

® Integrating out Ug(e2™*"a/N S) can be done by the shift a — a — 27;:,’“ 61(Vs)

i/ . .
L4 UlE(e%”"a/N,S’) is shifted as (/o «55(5) has been regularized)

. ’
2mingng

UlE(eQﬂ'in;/N’Sl) N UlE(eQﬂ-ing/N7S/)e ﬁ Jsr #d61(Vs)

. ’
—271'1nana

= Urg(e™e/N , 8")e T Jsr dond1 (V)
= UlE(eZ”"”’":x/N7 S/)U2(6*27"i"a”/a/N7 VsnS')

[back]
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Axioms of 3-group 1/3

A semistrict 3-group (2-crossed module) is a set (L BpA G,>,{—, —}) satisfying

the following axioms. Here, G, H, and L are groups.

1. The maps
81:H—>G, Oy: L - H

are group homomorphisms 01 (h1h2) = (01h1)(01h2) and
02(l1l2) = (0211)(0212) for hi2 € H and Iy 2 € L, respectively. They satisfy

01002(l) =1

forl e L
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Axioms of 3-group 2/3

2. >isan actionof g€ Gon g’ € G, h € H, and | € L by automorphisms,
g>g' €G,g>bhe H, and g1 € L. The action gi> g’ is defined by conjugation,
grg =gg'g”".

3. 01,2 are G-equivalent, that is,

g> (01h) = d1(g>h), gv(920) = i(g>1),
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Axioms of 3-group 3/3

4. The Peiffer lifting {—, —} is a morphism H x H — L. In terms of the elements
hi2 € H,
{hl,hg} €L

For l1,2 € L, the Peiffer lifting satisfies
d2{h1,ha} = hihahT*(81h1) > hy
g {h1,ha} = {gv h1,g> ha},
{9al1,dal0} = lilal M5,
{h1h2,h3} = {h1, hahshy '} (81h1) > {ha, h3},
{h1,hahs} = {h1, ha}{h1, ha}{B2{h1, h3} ™1, (B1h1) > ha},
{821, ha}{ho, Dol } = l1(O1h) > 1T .
[back]
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