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Plan
• Sachdev-Ye-Kitaev model

• Maximally chaotic quantum mechanical model

• SYK4+2
• Departure from chaotic behavior

•Quantitative analysis of Fock-space localization
• Many-body transition point 
• Inverse participation ratio
• Entanglement entropy
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Publications and collaborators
• Sachdev-Ye-Kitaev model

• Proposal for experiment: PTEP 2017, 083I01 and arXiv:1709.07189
• with Ippei Danshita and Masanori Hanada

• Black Holes and Random Matrices: JHEP 1705(2017)118
• with J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, and A. Streicher

• SYK4+2
• Chaotic-integrable transition: PRL 120, 241603 (2018)

• with Antonio M. García-García, Bruno Loureiro, and Aurelio Romero-Bermúdez
• Characterization of quantum chaos: JHEP 1904(2019)082 and Phys. Rev. E 102, 022213 (2020)

• with Hrant Gharibyan, M. Hanada, and Brian Swingle
• Related setups:

• [short-range interactions] Phys. Rev. B 99, 054202 (2019) with A. M. García-García
• Phys. Lett. B 795, 230 (2019) and J. Phys. A 54, 095401 (2021) with Pak Hang Chris Lau, Chen-Te Ma, and Jeff Murugan

• Quantitative analysis of Fock-space localization in SYK4+2
• Many-body transition point and inverse participation ratio

• Phys. Rev. Research 3, 013023 (2021) with Felipe Monteiro, Tobias Micklitz, and Alexander Altland
• Entanglement entropy

• arXiv:2012.07884 with F. Monteiro, A. Altland, David A. Huse, and T. Micklitz



෡𝐻 =
3!

𝑁3/2
෍

1≤𝑎<𝑏<𝑐<𝑑≤𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

𝐽𝑎𝑏𝑐𝑑 : 独立にガウス分布する結合定数 (𝐽𝑎𝑏𝑐𝑑
2 = 𝐽2(= 1), 𝐽𝑎𝑏𝑐𝑑 = 0)

Ƹ𝜒𝑎=1,2,…,𝑁: 𝑁個のマヨラナフェルミオン ( Ƹ𝜒𝑎, Ƹ𝜒𝑏 = 𝛿𝑎𝑏)

𝐽3567 𝐽1259 𝐽4567 𝐽1348

⋯

Sachdev-Ye-Kitaev (SYK) 模型

[A. Kitaev: talks at KITP
(Feb 12, Apr 7 and May 27, 2015)]

cf. SY model [S. Sachdev and J. Ye, 1993]
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One term of the 10-Majorana fermion SYKq=4

5 qubits

32状態のフォック空間: 5次元超立方体
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Sachdev-Ye-Kitaev模型
N個の（マヨラナまたはディラック）フェルミオン、ランダム全対全結合

[Dirac version][Majorana version]

[A. Kitaev’s talk]
[S. Sachdev: PRX 5, 041025 (2015)]
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෡𝐻 =

1

2𝑁 3/2
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𝑖𝑗;𝑘𝑙

𝐽𝑖𝑗;𝑘𝑙 Ƹ𝑐𝑖
† Ƹ𝑐𝑗

† Ƹ𝑐𝑘 Ƹ𝑐𝑙

[A. Kitaev: talks at KITP (2015)]

原子核理論に関係して、古くから研究されていた

• [French and Wong, Phys. Lett. B 33, 449 (1970)]

• [Bohigas and Flores, Phys. Lett. B 34, 261 (1971)]

“Two-body Random Ensemble”

cf. SY model [S. Sachdev and J. Ye, 1993]



SYK: 𝑁 ≫ 1で解ける模型

𝐽𝑎𝑏𝑐𝑑
2

𝐽
= 𝐽2, ガウス分布

非摂動ハミルトニアン = 0,

෡𝐻 =
3!

𝑁3/2
෍
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を摂動とみてダイアグラム展開

𝐽𝑎𝑏𝑐𝑑𝐽𝑎𝑏𝑐𝑒 𝐽 = 0 if 𝑑 ≠ 𝑒➔大部分のダイアグラムの平均は 0

自由粒子の2点関数

𝐺0,𝑖𝑗 𝑡 = − T𝜓𝑖 𝑡 𝜓𝑗 0

= −
1

2
sgn 𝑡 𝛿𝑖𝑗

サンプル平均をとると、「メロン型」ダイアグラムのみ生き残る

O(1) O(N-2)

点線は同じ相互作用をつなぐ

(サンプル平均 ⋯ 𝐽 が前提)

From Wikimedia Commons (By Aravind Sivaraj (2012))
CC BY-SA 3.0

𝑁: フェルミオンの個数

melon not melon 🕶



ダイアグラム展開

𝐽𝑖𝑗𝑘𝑙 𝐽𝑗𝑘𝑙𝑚

෍

𝑗𝑘𝑙

𝐽𝑖𝑗𝑘𝑙𝐽𝑗𝑘𝑙𝑚 𝐽
=
𝑁3

3!
𝛿𝑖𝑚

෡𝐻SYK4 =
3!

𝑁3/2
෍

1≤𝑎<𝑏<𝑐<𝑑≤𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑
𝐽𝑎𝑏𝑐𝑑

2 = 𝐽2 = 1

Ƹ𝜒𝑎 , Ƹ𝜒𝑏 = 𝛿𝑎𝑏

෍

𝑚≠𝑖

෍

𝑗𝑘𝑙𝑗′𝑘′𝑙′

𝐽𝑖𝑗𝑘𝑙𝐽𝑗𝑘𝑙𝑚𝐽𝑚𝑗′𝑘′𝑙′𝐽𝑗′𝑘′𝑙′𝑖′ 𝐽
∝ 𝑁4𝛿𝑖𝑖′

𝐽𝑖𝑗𝑘𝑙
𝐽𝑗𝑘𝑙𝑚 𝐽𝑚𝑗′𝑘′𝑙′

𝐽𝑗𝑘𝑙𝑖′

𝑂 𝑁0 の寄与 𝑂 𝑁−2 の寄与

Large-N:「メロン型」ダイアグラムが支配的

[J. Polchinski and V. Rosenhaus, JHEP 1604 (2016) 001]
[J. Maldacena and D. Stanford, PRD 94, 106002 (2016)]

サンプル平均 ⋯ 𝐽 𝑞 = 4



𝑁 ≫ 1極限で支配的なダイアグラム

↑ 図は[I. Danshita, M. Tezuka, and M. Hanada: Butsuri 73(8), 569 (2018)]より→

𝐺 1 − Σ𝐺0 = 𝐺0

𝐺−1 = 𝐺0
−1 − Σ

𝐺 𝑖𝜔 −1 = 𝑖𝜔 − Σ 𝑖𝜔

[Sachdev and Ye 1993],
[Parcollet and Georges 1999], …



パラメータの取り換えの自由度
低エネルギー (𝜔, 𝑇 ≪ 𝐽): 𝑖𝜔を無視

虚時間のパラメータの取り換えで不変

emergent conformal gauge invariance
[S. Sachdev, Phys. Rev. X 5, 041025 (2015)]

[J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016)]
Study of the Goldstone modes: e.g. [D. Bagrets, A. Altland, and
A. Kamenev, Nucl. Phys. B 911, 191 (2016)]

“System nearly invariant under a full
reparametrization (Virasoro) symmetry, NCFT1”

-β

β
τ

σ

𝑓 𝜎

𝐺 𝑖𝜔 −1 = 𝑖𝜔 − Σ 𝑖𝜔

𝑓, 𝑔は単調で微分可能な任意関数



鞍点解での対称性の破れ

1+1次元重力と双対な模型に期待されるように、
対称性は SL(2, R)に破れる cf. isometry group of AdS2
[see e.g. A. Strominger, hep-th/9809027]

Large-Nでの鞍点解（レプリカ対称性を仮定）

パラメータの取り換えの自由度は以下のものに限定される:

S. Sachdev, Phys. Rev. X 5, 041025 (2015); 
J. Maldacena and D. Stanford, Phys. Rev. D 
94, 106002 (2016)
Antal Jevicki, Kenta Suzuki, and Junggi Yoon, 
JHEP07(2016)007

Jackiw-Teitelboim (JT) 重力: 極限に近いブラックホールの
地平線近傍での1+1次元ディラトン重力



カオスを特徴づけるリアプノフ指数の、
非時間順序相関 OTOCからの定義

実時間 t

古典カオス: 
微小にずれた初期値から時間発展

t=0

𝛿𝑥 𝑡
~𝑒𝜆L𝑡 𝛿𝑥 𝑡 = 0

𝜆L: リアプノフ指数

𝑊 𝑡 = e𝑖𝐻𝑡𝑊e−𝑖𝐻𝑡

「ブラックホールは最速のスクランブラーである」
[P. Hayden and J. Preskill 2007] [Y. Sekino and L. Susskind 2008] 
[Shenker and Stanford 2014]

𝜆L ≤ Τ2π𝑘B𝑇 ℏ（カオスの上限）
[J. Maldacena, S. H. Shenker, and D. Stanford, JHEP08(2016)106]

𝜕𝑥 𝑡

𝜕𝑥 0

2

= 𝑥 𝑡 , 𝑝 0 PB
2
→ 𝑒2𝜆L𝑡

𝛿𝑥 𝑡 = 0

量子系の時間発展: 
𝐶𝑇 𝑡 = ො𝑥 𝑡 , Ƹ𝑝 0 2

演算子 𝑉と𝑊について、

𝐶 𝑡 = | 𝑊 𝑡 , 𝑉 𝑡 = 0 |2 = 𝑊† 𝑡 𝑉† 0 𝑊 𝑡 𝑉 0 +⋯
[Wiener 1938][Larkin & Ovchinnikov 1969]

長時間で OTOC ~ 𝑒2𝜆L𝑡, 𝜆L > 0: カオス



非時間順序相関（OTOC）

Γ 𝑡1, 𝑡2, 𝑡3, 𝑡4 = Γ0 𝑡1, 𝑡2, 𝑡3, 𝑡4 +න𝑑𝑡𝑎𝑑𝑡𝑏 Γ 𝑡1, 𝑡2, 𝑡𝑎, 𝑡𝑏 𝐾 𝑡𝑎, 𝑡𝑏, 𝑡3, 𝑡4

[Kitaev’s talks]
[J. Polchinski and V. Rosenhaus, JHEP 1604 (2016) 001]
[J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016)]

（正則化された）OTOC が large-N
SYK 模型で計算でき、低温でカオス
の上限 𝜆L = Τ2π𝑘B𝑇 ℏを満たす

Ƹ𝜒𝑖 𝑡1 Ƹ𝜒𝑖 𝑡2 Ƹ𝜒𝑗 𝑡3 Ƹ𝜒𝑗 𝑡4



カオスの極限にある系

0+1次元 SY &
SYK 模型

1+1次元
JT 重力

ランダム
行列

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010),
Phys. Rev. X 5, 041025 (2015);
J. Maldacena and D. Stanford,
Phys. Rev. D 94, 106002 (2016); …

P. Saad, S. H. Shenker, and D. Stanford, arXiv:1903.11115;
D. Stanford and E. Witten, arXiv:1907.03363; …

J. S. Cotler, G. Gur-Ari, M. Hanada, J. 
Polchinski, P. Saad, S. H. Shenker, D. 
Stanford, A. Streicher, and MT, JHEP 
1705(2017)118; Y. Jia and J. J. M. 
Verbaarschot, JHEP 2007(2020)193; ...



𝑎𝑖𝑗 𝑖,𝑗=1

𝐾

𝑎𝑖𝑗 = 𝑎𝑗𝑖
∗

Density ∝ 𝑒−
𝛽𝐾

4
Tr𝐻2

= exp −
𝛽𝐾

4
σ𝑖,𝑗
𝐾 𝑎𝑖𝑗

2

実 (β=1): Gaussian Orthogonal Ensemble (GOE)
複素 (β=2): G. Unitary E. (GUE)
四元数 (β=4): G. Symplectic E. (GSE)

ガウス分布

𝑝 𝑒1, 𝑒2, … , 𝑒𝐾 ∝ ෑ

1≤𝑖<𝑗≤𝐾

𝑒𝑖 − 𝑒𝑗
𝛽
ෑ

𝑖=1

𝐾

𝑒−𝛽𝐾 Τ𝑒𝑖
2 4

固有値 𝑒𝑗 の同時分布関数 準位反発

• 𝑃 𝑠 : 正規化された準位間隔の分布 𝑠𝑗 =
𝑒𝑗+1−𝑒𝑗

∆ ҧ𝑒

GOE/GUE/GSE: 𝑃 𝑠 ∝ 𝑠𝛽で立ち上がり 𝑒−𝑠
2
で減衰

相関なし: 𝑃 𝑠 = 𝑒−𝑠（ポアソン分布）

• 𝑟 : 隣接準位間隔比の平均

𝑟 =
min 𝑒𝑖+1 − 𝑒𝑖 , 𝑒𝑖+2 − 𝑒𝑖+1
max 𝑒𝑖+1 − 𝑒𝑖 , 𝑒𝑖+2 − 𝑒𝑖+1

ガウシアンランダム行列理論

➔ SYK 模型:準位相関は微視的には（同じ対称性の）ガウシアンアンサンブルと一致

Uncorrelated GOE GUE GSE

𝑟 2log 2 – 1 = 0.38629… 0.5307(1) 0.5996(1) 0.6744(1)

[Y. Y. Atas et al. PRL 2013]

対応するSYK模型
（マヨラナ4体版）

𝑁 ≡ 0 (mod 8)

𝑁 ≡ 2, 6 (mod 8)

𝑁 ≡ 4 (mod 8)

[Fidkowski and Kitaev 2010]
[You, Ludwig, and Xu 2017]



cf. Analytical spectral density for large N [A. M. García-García and J. J. M. Verbaarschot: PRD 96, 066012 (2017)]

𝐽𝑎𝑏𝑐𝑑 : Gaussian and variance 𝜎2 = 𝐽2

𝑁
𝜌
𝜖

Τ𝜖 𝑁 𝐽

ハミルトニアンの数値的対角化→固有値スペクトル

小さな N:
強い準位反発が見える

Large Nへの外挿:
低温で有限のエントロピーが残る

෡𝐻 =
3!

𝑁3/2
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𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑



SYK模型の実験提案
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[I. Danshita, M. Hanada, MT: PTEP 2017, 083I01 (2017)]

[D. I. Pikulin and M. Franz, PRX 7, 031006 (2017)]
N本の磁束量子に貫かれたトポロジカル超伝導体の小孔

[A. Chen et al., PRL 121, 036403 (2018)]
磁場中のグラフェンの小片

s: 分子のエネルギー準位のラベル

光格子中の極低温フェルミ原子
＋光会合レーザー

量子回路 [L. García-Álvarez et al., PRL 2017]

Majorana wire array [Chew, Essin, and Alicea, PRB 2017 (R)]

Review: M. Franz and M. Rozali, 
“Mimicking black hole event horizons 
in atomic and solid-state systems”, 
Nature Reviews Materials 3, 491 (2018)



NMR による SYK模型の実現
“Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model”
Zhihuang Luo, Yi-Zhuang You, Jun Li, Chao-Ming Jian, Dawei Lu, Cenke Xu, Bei Zeng and Raymond Laflamme,
npj Quantum Information 5, 53 (2019)



SYK4+2

Q.: カオス的ダイナミクスのための最低条件？ (→重力側での解釈？)

なるべく単純な模型を解析的・数値的手法で調べる

SYK4 SYK2

SYK4 as unperturbed Hamiltonian,
𝐾 controls the strength of SYK2 (one-body random term, solvable) 

𝐽𝑎𝑏𝑐𝑑: 平均 0, 標準偏差
6𝐽

𝑁 Τ3 2

𝐾𝑎𝑏: 平均 0, 標準偏差
𝐾

𝑁

ガウシアンランダム結合

どちらの項も、複素フェルミオンで書いたときのパリティを保存
➔ 2N/2-1次元のハミルトニアン行列の完全数値対角化は𝑁 ≲ 34で可能

෡𝐻 = ෍

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 ෍

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

𝐽 = 1: unit of energy

ここでは GUE
𝑁 ≡ 2 (mod 4)
に注目する。

A. M. García-García, A. Romero-Bermúdez, B. Loureiro, 
and MT, Phys. Rev. Lett. 120, 241603 (2018)
also see: reply (arXiv:2007.06121) in press to comment (J. Kim and 
X. Cao, arXiv:2004.05313).



RMT-like behavior lost as SYK2 term is introduced

𝑃 𝑠 : level spacing distribution
Ratio of consecutive level spacing 𝐸𝑖+1 − 𝐸𝑖
to the local mean level spacing Δ
(requires unfolding of the spectrum)

SYK4 limit (small K):
Obeys random matrix theory (RMT)

(GUE (Gaussian Unitary Ensemble) if 𝑁 ≡ 2 (mod 4))

SYK2 (large K): Poisson (𝑒−𝑆)

Also see: T. Nosaka, D. Rosa, and J. Yoon, JHEP 1809, 041 (2018) for other symmetry cases
cf. A. V. Lunkin, K. S. Tikhonov, and M. V. Feigel’man, PRL 121, 236601 (2018); Y. Yu-Xiang, F. Sun, J. Ye, and W. M. Liu, 1809.07577, …

N=30, Central 10 % of eigenvalues

PRL 120, 241603 (2018)



SYK𝑞≥4 + SYK2 : breakdown of chaos

Deviation from Gaussian random matrix as SYK2 component is introduced

෡𝐻 = ෍

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 ෍

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

SYK4 SYK2
𝐾𝑎𝑏: standard deviation = ൗ

𝜅
𝑁

PRL 120, 241603 (2018)

Lyapunov exponent calculated in the 
large-N limit: also deviates from the 
chaos bound, approaches zero at low T
(see also our reply 2007.06121 to a 
comment, PRL in press)

GUE
(Gaussian Unitary Ensemble)

Poisson
(uncorrelated)

We consider 𝑁
Majorana fermions 
with normalization 
Ƹ𝜒𝑎 , Ƹ𝜒𝑏 = 𝛿𝑎𝑏 here

Averaged 
ratio between 
neighboring
energy level 
separations



Many-body localization

• Anderson localization: concept in non-interacting systems
• Localization of wavefunctions due to scatterings at impurities

• Many experiments in cold atom gases, optical fibers, etc.

• MBL: does localization occur in interacting systems?
[Gornyi, Mirlin, Polyakov 2005, Basko, Aleiner, Altshuler 2006, Oganesyan and Huse 2007, … many others]

• Memory of initial conditions remains accessible at long times

• Reduced density matrix on a subsystem does not approach a thermal one

• Energy eigenstates do not obey Eigenstate Thermalization Hypothesis (ETH)

• Area law, rather than volume law, of entanglement entropy

• “Standard model”: spin-1/2 Heisenberg model + random field in z direction
• Much debate on the location of the localization transition

෡𝐻 =෍

𝑖

𝑁

෡𝑆𝑖 ∙ ෢𝑆𝑖+1 +෍

𝑖

𝑁

ℎ𝑖෢𝑆𝑖
𝑧

ℎ𝑖 ∈ [−ℎ, ℎ] uniform distribution

ETH: “(almost) all eigenstates are thermal
(expectation values of operators = microcanonical average)”



Our model and choice of basis

SYK4 + 𝛿 SYK2

෡𝐻 = − ෍

1≤𝑎<𝑏<𝑐<𝑑

𝑁=2𝑁D

𝐽′𝑎𝑏𝑐𝑑 ෠𝜓𝑎 ෠𝜓𝑏
෠𝜓𝑐 ෠𝜓𝑑 + 𝑖 ෍

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 ෠𝜓𝑎 ෠𝜓𝑏

Block-diagonalize the SYK2 part
(the skew-symmetric matrix 𝐾𝑎𝑏 has eigenvalues ±𝑣𝑗)

෡𝐻 = − ෍

1≤𝑎<𝑏<𝑐<𝑑

2𝑁D

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 ෍

1≤𝑗≤𝑁

2𝑁D

𝑣𝑗 Ƹ𝜒2𝑗−1 Ƹ𝜒2𝑗

We choose ෠𝜓𝑎 , ෠𝜓𝑏 = Ƹ𝜒𝑎, Ƹ𝜒𝑏 = 2𝛿𝑎𝑏 as the 

normalization for the 𝑁 = 2𝑁D Majorana fermions.

For Ƹ𝑐𝑗 =
1

2
Ƹ𝜒2𝑗−1 + i Ƹ𝜒2j we have Ƹ𝑐𝑖 , Ƹ𝑐𝑗

† = 𝛿𝑖𝑗.

Normalization of 𝐽𝑎𝑏𝑐𝑑, 𝑣𝑗 : 

SYK4 bandwidth = 1,
Width of 𝑣𝑗 distribution = 𝛿

F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)



Our model and choice of basis

෡𝐻 = − ෍

1≤𝑎<𝑏<𝑐<𝑑

2𝑁D

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 ෍

1≤𝑗≤𝑁

𝑁D

𝑣𝑗 Ƹ𝜒2𝑗−1 Ƹ𝜒2𝑗

= − ෍

1≤𝑎<𝑏<𝑐<𝑑

2𝑁D

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + ෍

1≤𝑗≤𝑁

𝑁D

𝑣𝑗 2ො𝑛𝑗 − 1

Each term of SYK4 connects vertices with distance = 0, 2, 4.

For 𝑁 = 14, each vertex is directly connected with
1 (distance=0, itself) + 21 (distance=2) + 35 (distance=4)
vertices out of the possible 2𝑁 = 128 (64 per parity).

𝑁 = 2𝑁D = 14: 27 = 128 states

⟩|0001100

Ƹ𝑐𝑗 =
1

2
Ƹ𝜒2𝑗−1 + i Ƹ𝜒2j

F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Basis diagonalizing the complex fermion number operators 

ො𝑛𝑗 = Ƹ𝑐𝑗
† Ƹ𝑐𝑗→ Sites: the 2𝑁D vertices of an 𝑁D-dim. hypercube.



Our model and choice of basis

SYK4 + 𝛿 SYK2

෡𝐻 = − ෍

1≤𝑎<𝑏<𝑐<𝑑

2𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + ෍

1≤𝑗≤𝑁

𝑁

𝑣𝑗 2ො𝑛𝑗 − 1

For 𝑁 = 34, each vertex is directly connected with
1 (distance=0, itself) + 136 (distance=2) + 2380 (distance=4)

vertices out of the possible 2𝑁/2 = 131072 (65536 per parity).

Each term of SYK4 connects vertices with distance = 0, 2, 4.

Basis diagonalizing the complex fermion number operators 

ො𝑛𝑗 = Ƹ𝑐𝑗
† Ƹ𝑐𝑗→ Sites: the 2𝑁D vertices of an 𝑁D-dim. hypercube.

2𝑁D Fock states

𝒪(𝑁4) neighbors

F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)



෡𝐻2 = ෍

1≤𝑗≤𝑁

𝑁

𝑣𝑗 2ො𝑛𝑗 − 1

width of 𝑣𝑗 dist. = 𝛿

Four regimes of disorder strengths

𝛿

1

𝑁D
Τ−1 2

Site energy of site #m:

• Typical energy difference between 
arbitrary pair of sites ≲ 1

• Typical energy difference > 1, but difference 
between sites connected by ෡𝐻4 ≲ 1

• Difference between sites connected by ෡𝐻4 > 1

• Fock space localization (𝛿c ∼ 𝑁D
2 ln𝑁D for Bethe lattice)

𝜖(𝑚=σ1≤𝑗≤𝑁
𝑁 2𝑗−1𝑛𝑗)

= ෍

1≤𝑗≤𝑁

𝑁

−1 𝑛𝑗−1𝑣𝑗

Width of 𝜖𝑚 dist. = 𝑁D𝛿

[Altshuler, Gefen, Kamenev, and Levitov, PRL 78, 2803 (1997)]

෡𝐻4 = − ෍

1≤𝑎<𝑏<𝑐<𝑑

2𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

SYK4 bandwidth = 1

෡𝐻 = ෡𝐻4 + ෡𝐻2

𝐸

𝐸

𝐸

I

II

III

IV

𝛿c



Diagnostic quantities: Moments of wave functions 
and spectral two-point correlation function

• Moments of eigenstate wave functions

𝐼𝑞 = 𝜈−1෍

𝑛,𝜓

𝜓 𝑛 2𝑞𝛿 𝐸𝜓 𝐽

with average density of states at band center

𝜈 = 𝜈 𝐸 ≃ 0 , 𝜈 𝐸 =෍

𝜓

𝛿 𝐸 − 𝐸𝜓 𝐽

➔Parametrizes localization, allows 
comparison with numerics

𝐼2 = 𝜈−1σ𝑛,𝜓 𝜓 𝑛 4𝛿 𝐸𝜓 𝐽
:

inverse participation ratio (IPR), 
1

𝐷
≤ 𝐼2 ≤ 1

• Spectral two-point correlation function

𝐾 𝜔 = 𝜈−2 𝜈
𝜔

2
𝜈 −

𝜔

2 c

c: connected part

𝐴𝐵 𝑐 = 𝐴𝐵 𝐽 − 𝐴 𝐽 𝐵 𝐽

➔ Reflects level repulsion if the spectrum is 
random matrix-like

Equal weights Single non-
zero element𝐷: dimension of | ⟩𝑛 = 2𝑁−1

We calculate these quantities for large N
and compare against numerical results 

𝐸
0−

𝜔

2

𝜔

2



Analytical results

𝛿

1

𝑁D
Τ−1 2

𝛿c

• I: Average density of states (ADoS) at band center 𝜈 = 𝑐𝐷

• 𝐼𝑞 = 𝑞!𝐷1−𝑞

• II: ADoS 𝜈 =
𝑐𝐷

𝑁D𝛿
, spread of wave functions 𝐷res ≃

𝐷

𝑁D𝛿

• 𝐼𝑞 = 𝑞!𝐷res
1−𝑞

• III: ADoS 𝜈 =
𝑐𝐷

𝑁D𝛿
, spread of wave functions 𝐷res ≃

𝐷

𝑁D𝛿2

• 𝐼𝑞 = 𝑞!𝐷res
1−𝑞

= 𝑞 2𝑞 − 3 ‼
4 𝑁𝛿2

𝜋𝐷

𝑞−1

• IV: All eigenstates localized to 𝒪(1) sites

(𝑁D =
𝑁

2
, 𝑐 = O 1 , 𝐷 = 2𝑁D−1)

𝛿c =
𝑁D
2

4 3
log 𝑁D for large 𝑁

෩𝐾 𝑠 = 1 −
sin2 𝑠

𝑠2
+ 𝛿

𝑠

𝜋
,

𝑠 = 𝜋𝜔𝜈 in I, II, III :
agrees with Gaussian 
Unitary Ensemble (GUE)

Eigenenergy spectral 
statistics (for odd 𝑁 case 

for simplicity)

IV: Poisson statistics

𝛿

𝛿

𝛿

Method: Exact matrix integral representation of 𝐼𝑞 and 𝐾 𝜔 ;

mapping to a supersymmetric sigma model;
saddle point equations; effective medium approximation

Fully delocalized

Strongly restricted

I

II

III

IV

Restricted

PRR 3, 013023 (2021)



Inverse participation ratio vs prediction for III

𝐼𝑞 =
𝑞 2𝑞−3 ‼
𝛿2 1−𝑞

𝜋𝐷

4 𝑁D

1−𝑞

= 𝑞 2𝑞 − 3 ‼
4 𝑁D𝛿

2

2𝑁−1𝜋

𝑞−1

in III Central 1/7 of the energy spectrum

IPR 𝐼2 = average of σ𝑛 𝜓 𝑛 4 for normalized 𝜓, 
1

𝐷
≤ 𝐼2 ≤ 1

Equal weights Single non-zero element

𝑁D = 15𝑁D = 13𝑁D = 11

PRR 3, 013023 (2021)



Higher moments of 
eigenvectors

𝐼𝑞 =
𝑞 2𝑞−3 ‼
𝛿2 1−𝑞

𝜋𝐷

4 𝑁D

1−𝑞

= 𝑞 2𝑞 − 3 ‼
4 𝑁D𝛿

2

2𝑁−1𝜋

𝑞−1

in III

Analytical prediction:

Central 1/7 of the energy spectrumGood agreement up to large 𝑞 for 𝛿 ∼ 1

PRR 3, 013023 (2021)

𝑁D = 15

𝐼𝑞 = 𝜈−1෍

𝑛,𝜓

𝜓 𝑛 2𝑞𝛿 𝐸𝜓 𝐽



Spectral statistics: gap ratio distribution

Measure difference by Kullback-Leibler (KL) 

divergence: 𝐷KL(𝑃| 𝑄 = σ𝑥𝑃 𝑥 log
𝑃 𝑥

𝑄 𝑥
.

𝜹 𝐷KL(𝑃(𝛿 , 𝑟)||𝑃Poisson 𝑟 ) 𝐷KL(𝑃(𝛿 , 𝑟)||𝑃GUE 𝑟 )

3 0.3608 5 × 10−6

14 0.1234 0.1463

40 0.0096 0.5705

𝑁D = 15
𝑟 =

min 𝐸𝑖+1 − 𝐸𝑖 , 𝐸𝑖+2 − 𝐸𝑖+1
max 𝐸𝑖+1 − 𝐸𝑖 , 𝐸𝑖+2 − 𝐸𝑖+1

(𝛿c =
𝑍

2𝜌
𝑊 2𝑍 𝜋 = 38.47)

PRR 3, 013023 (2021)



Departure from random matrix 𝑃 𝑟 occurs 
after 𝐼2 has grown significantly

I II III IV

𝑁D = 15

PRR 3, 013023 (2021)



Summary so far…

Four regimes (I: ergodic, II: localization starts,
III: localization rapidly progresses, IV: MBL)
found in SYK4 + δ SYK2 system
(in SYK2-diagonal basis);
I, II, III are chaotic while IV is not

Prediction for momenta of eigenstate 
wavefunctions 𝐼𝑞 is verified by parameter free 

comparison, and energy spectrum statistics is 
consistent with GUE/Poisson transition well 
after entering regime III

Felipe Monteiro, Tobias Micklitz, Masaki 
Tezuka, and Alexander Altland, Phys. Rev.
Research 3, 013023 (2021) arXiv:2005.12809

Fock space localization in 
many-body quantum systems

Analytical estimate of inverse 
participation ratio, spectral 

statistics

Numerical calculation of inverse 
participation ratio, energy 

spectrum correlation

Sachdev-Ye-Kitaev model 
as tractable system

➔ Behavior of the entanglement entropy?



Physics just outside MBL (regions II & III)?
• Thermal phase smoothly connected to extended states (as those in 

translationally invariant models)?

• Non-ergodic extended (NEE) states discussed for several models 
(Bethe lattice, random regular graphs, disordered Josephson junction chains, …)

“Non-ergodic extended phase of the Quantum Random Energy Model”
[L. Faoro, M. V. Feigel’man, L. Ioffe, Ann. Phys. 409, 167916 (2019)]

“golf course” potential energy landscape



Evaluation of entanglement entropy
A B

Zero-energy eigenstate 𝜓 , density matrix 𝜌 = |𝜓⟩⟨𝜓|

Reduced density matrix 𝜌𝐴 = tr𝐵𝜌

Entanglement entropy 𝑆𝐴 = −tr𝐴(𝜌𝐴ln𝜌𝐴)Fock space ℱ = ℱ𝐴 ⊗ℱ𝐵
𝑛 = (𝑙,𝑚)

Evaluate disorder averaged moments 𝑀𝑟 = ⟨tr𝐴 𝜌𝐴
𝑟 ⟩, 𝑆𝐴 = −𝜕𝑟𝑀𝑟|𝑟=1.

𝒩 = 𝑛1, 𝑛2, … , 𝑛𝑟 ,𝒩𝐴 = 𝑙1, 𝑙2, … , 𝑙𝑟 ,𝒩𝐵 = 𝑚1, 𝑚2, … ,𝑚𝑟

𝑁𝐴 bits 𝑁𝐵 = 𝑁 − 𝑁𝐴 bits

𝑙
𝑚

𝑙

𝑚 𝜌𝐴
𝑟 = ෍

𝑙1,…,𝑙𝑟

𝑚1,…,𝑚𝑟

𝜓(𝑙1,𝑚1) 𝜓
(𝑙2,𝑚1)

𝜓(𝑙2,𝑚2) 𝜓
(𝑙3,𝑚2)

⋯𝜓(𝑙𝑟,𝑚𝑟) 𝜓
(𝑙1,𝑚𝑟)

arXiv:2012.07884



Evaluation of power of reduced density matrix

𝜌𝐴
𝑟 = ෍

𝑙1,…,𝑙𝑟

𝑚1,…,𝑚𝑟

𝜓(𝑙1,𝑚1) 𝜓
(𝑙2,𝑚1)

𝜓(𝑙2,𝑚2) 𝜓
(𝑙3,𝑚2)

⋯𝜓(𝑙𝑟,𝑚𝑟) 𝜓
(𝑙1,𝑚𝑟)

For this sum to survive disorder averaging, 

𝒩 = 𝑛1, 𝑛2, … , 𝑛𝑟 and 𝒩 = 𝑛
1
, 𝑛

2
, … , 𝑛

𝑟
should be equal as sets, 

𝒩𝑖 = 𝒩
𝜎 𝑖

𝑛1 = 𝑛
1

, 𝑛2 = 𝑛
2

, 𝑛3 = 𝑛
3

, 𝑛4 = 𝑛
4

, 𝑛5 = 𝑛
5

𝑛1 = 𝑛
1

, 𝒏𝟐 = 𝒏
𝟒

, 𝑛3 = 𝑛
3

, 𝒏𝟒 = 𝒏
𝟐

, 𝑛5 = 𝑛
5

𝑀𝑟 = tr𝐴 𝜌𝐴
𝑟 =෍

𝜎

෍

𝒩

ෑ

𝑖=1

𝑟

𝜓𝑛𝑖
2
𝛿𝒩𝐴, 𝜎∘𝜏 𝒩𝐴

𝛿𝒩𝐵,𝜎𝒩𝐵

arXiv:2012.07884

𝑛1 𝑛
1 𝑛2 𝑛

2



Analytical results

𝛿

𝑁D
Τ−1 2

𝛿c

• I: Uniform distribution of wave functions, 𝜈𝑛 = 𝜈

• II, III: Global DoS 𝐷𝜈 ≈
𝐷

2𝜋𝑁D𝛿
, spectral measure 𝜌𝑛 ≃

1

𝐷A

Δ

Δ𝐵
𝑒
−

𝑣𝐴
2

2Δ𝐵
2

• IV: All eigenstates localized to 𝒪(1) sites

𝛿c =
𝑁D
2

4 3
log 𝑁D for large 𝑁

𝐸

𝐸

𝐸

I

II

III

IV

PRR 3, 013023 (2021)

Nearest neighbors remain energetically close, 𝛿 ≪ Δ4, and level broadening 𝜅 = Δ4

Δ4 = 𝒪(1)

Only 𝒪
Δ4

𝛿

2
of nearest neighbors remain in resonance, broadening reduced to 𝜅~Δ4

2/𝛿



Regime I: maximally random case

𝑀𝑟 ≈ 𝐷𝐴
1−𝑟 +

𝑟
2

𝐷𝐴
2−𝑟𝐷𝐵

−1

Uniform distribution of wave functions, 𝜈𝑛 = 𝜈

𝐷𝐴(𝐵) = 2𝑁𝐴(𝐵)−1

𝑀𝑟 = tr𝐴 𝜌𝐴
𝑟 =෍

𝜎

෍

𝒩

ෑ

𝑖=1

𝑟

𝜓𝑛𝑖
2
𝛿𝒩𝐴, 𝜎∘𝜏 𝒩𝐴

𝛿𝒩𝐵,𝜎𝒩𝐵

𝑀𝑟 = ⟨tr𝐴 𝜌𝐴
𝑟 ⟩, 𝑆𝐴 = −𝜕𝑟𝑀𝑟|𝑟=1

Leading term Single transpositions: next leading term

arXiv:2012.07884

Exponentially small if 𝑁𝐴 ≪ 𝑁𝐵;
𝑆𝐴 very close to the thermal value

Up to single transpositions

𝑆𝐴 − 𝑆th = −
𝐷𝐴
2𝐷𝐵

Difference from the thermal value 𝑆th = ln𝐷𝐴

uniform



Regimes II and III: reduced effective dimension
• Assume ergodicity and calculate 𝑆𝐴

• Energy shell: extended cluster of 
resonant sites (width 𝜅) embedded in the 
Fock space

• Neighboring sites of 𝑛: energy 𝑣𝑚 =
𝑣𝑛 ± 𝒪 𝛿 , much more likely to be in the 
same shell because 𝛿 ≪ Δ2 = 𝑁D𝛿

in Regimes II, III

(
1

𝑁D
≪ 𝛿 < 𝛿c~𝑁D

2 ln𝑁D)

arXiv:2012.07884

𝑆𝐴 − 𝑆th = −
1

2
ln

𝑁D
𝑁𝐵

+
𝑁𝐴
2𝑁𝐷

−
𝑁D
2𝑁𝐴

𝐷𝐴
2𝐷𝐵

Additional assumptions
• Exponentially large number of sites →

self averaging
(sum over site energies = average over 
approx. Gaussian distributed 
contributions of subsystem energies to 
the total energy)

• Total energy 𝐸 ~ 𝐸𝐴 + 𝐸𝐵

➔ Up to single transpositions (justified in 1 ≪ 𝑁𝐴 ≪ 𝑁D & replica limit): 𝑆𝐴 − 𝑆th = −
𝐷𝐴
2𝐷𝐵

in Regime I



Offset from the thermal value

in Regimes II, III (
1

𝑁D
≪ 𝛿 < 𝛿c~𝑁D

2 ln𝑁D)

𝑁D = 14 (𝑁 = 28 Majorana fermions)

arXiv:2012.07884

𝑆𝐴 − 𝑆th = −
1

2
ln

𝑁D
𝑁𝐵

+
𝑁𝐴
2𝑁𝐷

−
𝑁D
2𝑁𝐴

𝐷𝐴
2𝐷𝐵

(< 0)

𝛿

𝑆th − 𝑆𝐴

𝐷𝐴
2𝐷𝐵

1

𝑁DI II III IV

𝑆th

𝒪(1) 𝛿c

Plateau expected

➔ Numerically checked



Summary
• The Sachdev-Ye-Kitaev (SYK) model: quantum mechanical model realizing 

chaos bound (~ random matrix, black holes)

• Several experimental proposals, small systems realized

• SYK4+2: analytically tractable model for many-body localization (MBL)
• Fock space: (N/2)-dimensional hypercube

• Analytical results on eigenfunction moments and MBL point
➔ Agreement with numerical results without free paramters

• Evaluation of entanglement entropy 𝑆𝐴 assuming ergodicity in energy shells
➔ Agreement between the numerical and analytical results

Phys. Rev. Research 3, 013023 (2021) arXiv:2005.12809
arXiv:2012.07884


