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QCD相図

予想図

[Fukushima-Hatsuda (11)]
Rep. Prog. Phys. 74 (2011) 014001 K Fukushima and T Hatsuda

Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on SχB patterns.

and sets a natural scale for the critical temperature of
chiral restoration. In the chiral perturbation theory (χPT)
the chiral condensate for two massless quark flavours at
low temperature is known to behave as 〈ψ̄ψ〉T /〈ψ̄ψ〉 =
1 − T 2/(8f 2

π ) − T 4/(384f 4
π ) − · · · with the pion decay

constant fπ $ 93 MeV [29]. Although the validity of
χPT is limited to low temperature, this is clear evidence
of the melting of chiral condensate at a finite temperature.
At low baryon density, likewise, the chiral condensate
decreases as 〈ψ̄ψ〉nB/〈ψ̄ψ〉 = 1 − σπN nB/(f 2

π m2
π )− · · ·

[30–32] where σπN ∼ 40 MeV is the π–N sigma term.
(For higher order corrections, see [33, 34].)
The chiral transition is a notion independent of the
deconfinement transition. In section 3.2 we classify the
chiral transition according to the SχB pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the
phase structure of QCD matter including conjectures which
are not fully established. At present, relatively firm statements
can be made only in limited cases—phase structure at a finite
T with a small baryon density (µB & T ) and that at an
asymptotically high density (µB ' %QCD). Below we will
take a closer look at figure 1 from a smaller to larger value of
µB in order.

Hadron-quark phase transition at µB = 0. The QCD phase
transition at finite temperature with zero chemical potential
has been studied extensively in the numerical simulation on
the lattice. Results depend on the number of colours and
flavours as expected from the analysis of effective theories
on the basis of the renormalization group together with the
universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the
finite-size scaling analysis on the lattice [37], and the critical
temperature is found to be Tc $ 270 MeV. For Nf > 0

light flavours it is appropriate to address more on the chiral
phase transition. Recent analyses on the basis of the staggered
fermion and Wilson fermion indicate a crossover from the
hadronic phase to the quark–gluon plasma for realistic u, d
and s quark masses [38, 39]. The pseudo-critical temperature
Tpc, which characterizes the crossover location, is likely to be
within the range 150–200 MeV as summarized in section 4.2.

Even for the temperature above Tpc the system may be
strongly correlated and show non-perturbative phenomena
such as the existence of hadronic modes or pre-formed
hadrons in the quark–gluon plasma at µB = 0 [28, 40]
as well as at µB (= 0 [41–43]. Similar phenomena can
be seen in other strong-coupling systems such as the high-
temperature superconductivity and in the BEC regime of
ultracold fermionic atoms [44].

QCD critical points. In the density region beyond µB ∼ T
there is no reliable information from the first-principles lattice
QCD calculation. Investigation using effective models is a
pragmatic alternative then. Most of the chiral models suggest
that there is a QCD critical point located at (µB = µE, T = TE)
and the chiral transition becomes first order (crossover) for
µB > µE (µB < µE) for realistic u, d and s quark masses
[45–48] (see point E in figure 2). The criticality implies
enhanced fluctuations, so that the search for the QCD critical
point is of great experimental interest [49, 50].

There is also a possibility that the first-order phase
boundary ends at another critical point in the lower-T and
higher-µB region whose location we shall denote by (µF, TF)
as shown by point F in figure 2. As discussed in section 6,
the cold dense QCD matter with three degenerate flavours
may have no clear border between superfluid nuclear matter
and superconducting quark matter, which is called the quark–
hadron continuity.

In reality, the fate of the above critical points (E and F)
depends strongly on the relative magnitude of the strange quark
mass ms and the typical values of T and µB at the phase
boundary.
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QCD相図

特徴的な 3つの相：ハドロン相、Quark-Gluon Plasma相、カラー超伝導相

[Fukushima-Hatsuda (11)]
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QCD相図

原子核衝突実験で探る QCD物質

[Fukushima-Hatsuda (11)]

LHC, RHIC-BES, FAIR, NICA, J-PARC-HI?
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重イオン衝突実験で探るQuark-Gluon Plasma（QGP）の物性

実験とは言うものの制御不可能な部分が多く、一つの自然現象と捉えるスタンスで研究している

ビー
ム

▶ 低運動量のクォーク・グルーオン
流体力学（QGP物理の基盤）
QGPの粘性など

▶ 高運動量のクォーク・グルーオン
QGPの阻止能

▶ 重クォーク
QGPの摩擦係数

▶ 光子・レプトン対
QGPの温度やスペクトル関数

▶ クォーコニウム
QGPの遮蔽長？

明らかになってきたこと：予想に反して QGPは「強相関な」非閉じ込め物質
5 / 36
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J/ψ抑制の理論

真空中のクォーコニウム（重クォーク対の束縛状態）

JP = 1− のクォーコニウム [Particle Data Group (16)]

質量 束縛エネルギー ∗

J/ψ 3.097 GeV ∼ 0.6 GeV
ψ(2S) 3.686 GeV ∼ 0.05 GeV
Υ(1S) 9.460 GeV ∼ 1 GeV
Υ(2S) 10.023 GeV ∼ 0.5 GeV
Υ(3S) 10.355 GeV ∼ 0.2 GeV

* 2mD± = 3.739 GeV、2mB± = 10.559 GeV から計算した

▶ 量子ゆらぎのスケールよりも重い→非相対論的な量子力学

V (r;T = 0) = −α
r︸︷︷︸

クーロン

+ σr︸︷︷︸
紐

T=0

c c
_

Confinement by string
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J/ψ抑制の理論

Quark-Gluon Plasma（QGP）中のクォーコニウム
▶ 温度スケールよりも重い場合、非相対論的な量子力学

V (r;T > Tc) = −
α

r
exp[−mDr]︸ ︷︷ ︸

遮蔽

, mD ∝ T

▶ カラーを持った粒子が閉じ込めから解放されることにより遮蔽
▶ T ≳ (1.2− 1.5)Tc ではチャーム対は束縛しない

Color Screening

cc

T>Tc
重イオン衝突実験での J/ψの収量抑制は QGP生成のシグナルになる [Matsui-Satz (86)]
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J/ψ抑制の理論

Quark-Gluon Plasma（QGP）中のクォーコニウム
▶ 温度スケールよりも重い場合、非相対論的な量子力学

V (r;T > Tc) = −
α

r
exp[−mDr]︸ ︷︷ ︸

遮蔽

, mD ∝ T

▶ カラーを持った粒子が閉じ込めから解放されることにより遮蔽
▶ T ≳ (1.2− 1.5)Tc ではチャーム対は束縛しない

QQ̄ free energy [Maezawa et al (12)]

960 Y. Maezawa, T. Umeda, S. Aoki, S. Ejiri, T. Hatsuda, K. Kanaya, H. Ohno

Fig. 1. Free energies of static quarks in color-singlet channel of quenched QCD at finite temperature.
The dashed gray curve shows the static-quark potential V (r) at T = 0 calculated in Ref. 30). The
arrows on the right side denote twice the single-quark free energy defined by 2FQ = −2T ln〈TrΩ〉.

Fig. 2. The same as Fig. 1 but for 2 + 1 flavor QCD. The static-quark potential V (r) at T = 0
has been calculated by the CP-PACS and JLQCD Collaborations.34) The fit results of V (r) by
the Coulomb + linear form are shown by the dashed gray curve. The arrows on the right side
denote 2FQ = −2T ln〈TrΩ〉.

The Sommer scale r0 is defined as r2dV/dr|r=r0 = 1.65. We set the scale by a
phenomenological value r0 = 0.5 fm.

In quenched QCD, a fit to the simulation results obtained on the anisotropic
203 × 160 lattice with Eq. (3.2) gives30)

(α0as/at, σasat, V0at, r0/as) = (0.068(2), 0.0132(1), 0.170(1), 5.140(32)),

where the fitting range was chosen to be 1.73 ≤ r/as ≤ 10. Setting r0 = 0.5 fm gives
1/as = 2.030(13) GeV (as # 0.097 fm) and

√
σ # 0.47 GeV. The fit result of the

static-quark potential is shown by the dashed gray curve in Fig. 1.
For 2 + 1 flavor QCD, the static-quark potential was measured by the CP-
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重イオン衝突実験での J/ψの収量抑制は QGP生成のシグナルになる [Matsui-Satz (86)]
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実験での状況

陽子衝突での重クォーク対生成
▶ パートン反応により重クォーク対生成
▶ その一部が束縛しクォーコニウムになる

原子核衝突での重クォーク対生成
▶ パートン反応により重クォーク対生成
▶ 熱的環境にさらされた後、終状態が確定する
▶ 束縛状態の生成時間は熱化より前？後？

▶ 前なら束縛状態として熱的環境に入る
▶ 後なら would-be-quarkoniumとして入る

▶ 重クォークの多体効果は Υでは小さい

p n

K
π
D

B
J/ψ
Y

p

p

hard collision

fragmentation

p n

K
π
D

B
J/ψ
Y

A

A

hard collision hydro expansion

freezeoutthermalization
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実験での状況

クォーコニウムの RAA ∼生き残り確率

束縛エネルギーの順に [CMS (13)]

深い束縛状態ほど生き残りやすく、直感的にも理解しやすい
より詳細に理解するには、クォーコニウムの時間発展の記述が必要
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理論的な発展

媒質中のスペクトル関数
[Asakawa-Hatsuda (04), Aarts et al (14)]

J/ψ のスペクトル関数

複素ポテンシャル
[Laine+ (07), Beraudo+ (08),

Brambilla+ (08), Rothkopf+ (12,15,...)]

not change the outcome. A unique global solution is found
based on an LBFGS minimizer with 512 bit precision
arithmetic and a step size stopping criterion of Δ ¼ 10−60.
Several of the reconstructed spectra for Nτ ¼ 24 are shown
in Fig. 1.
In the top panel of Fig. 2 the results for the real part from

the position of the lowest lying spectral peak are given by
colored open symbols. They are contrasted to the color
singlet free energies in Coulomb gauge Fð1ÞðrÞ ¼
−T log½W∥ðr; τ ¼ βÞ%, obtained on the same lattices (filled
gray circles). Since the raw values fall on top of each other
at small distances we have shifted them for better read-
ability. The error bars shown are obtained from the jack-
knife variance resulting from repeating the reconstruction
ten times excluding a different set of 10% of the underlying
measurements each. The error bands (given for T ¼ 210;
360; 629; 839 MeV) on the other hand denote the maxi-
mum variance obtained from changing three different
quantities. One corresponds to a reduction of the number
of data points along τ by 4 and 8, the second to changing
the default model normalization (×10, ×0.1) or functional
form (m ∝ const;ω−2;ω2) and the third to the reduction in
signal-to-noise ratio by excluding 10%, 20%, or 30% of the
available measurements. Note that because the spectral
reconstruction takes into account all data points along τ, our
results for T ≲ Tc are much more robust than the free
energies, which rely on a single data point. On the other
hand the Bayesian reconstruction suffers from a diminish-
ing number of data points at increasing temperature, as seen
in the error bands.
Our main observation is that even though the τ ¼ β data

point is excluded from the reconstruction, the values of
Re½V% obtained at all temperatures lie close to the color
singlet free energies. While the lowest temperature shows
no or very weak deviation from a linearly rising potential,
the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15 fm
we find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re½V%. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1, top panel),
where at intermediate τ values a deviation from the
exponential decay and a finite curvature emerges. For
accurate quantitative results, the reconstruction of the
lowest lying peak needs to capture both the width and
the skewness of the Lorentzian related to nonpotential
effects.
The novel Bayesian approach for the first time allows us

to extract this functional form (see Fig. 1, bottom panel),
where the MEM yielded Gaussian-like features. Previous
tests based on mock data from momentum regularized
HTL perturbation theory show that to obtain values
accurate to ∼25%, data sets with Nτ ∼Oð100Þ data points
are required at a high precision of ΔD=D < 10−4. If fewer
points are available the reconstruction tends to under-
estimate the width, while statistical noise leads to broad-
ening. The former effect dominates at high temperatures

FIG. 1 (color online). Spectral reconstruction: on-axis Wilson
line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
functions obtained by the new Bayesian reconstruction method.

FIG. 2 (color online). Gluonic medium. Top: the shifted real
part of the static interquark potential (open symbols) compared to
the color singlet free energies (gray circles). Error bars represent
statistical uncertainty; error bands include also systematics (see
main text). Bottom: Im½V% (symbols) shifted and compared to the
HTL predictions (solid lines).
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確率的ポテンシャル
[Akamatsu-Rothkopf (12), Kajimoto et al (18)]
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(Figure by Shiori Kajimoto)

幅、虚部、ゆらぎ
→ 動的な媒質効果
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理論的な発展

古典的には相互作用する 2つのブラウン粒子として記述される
▶ ブラウン運動における力：摩擦力、ランダム力、2粒子間ポテンシャル
▶ 遮蔽は熱的環境の静的効果 ↔ 摩擦力、ランダム力は動的効果

Y or B + B

Brownian motion

_

束縛状態は量子力学的な記述が必要だが、どうやって動的効果を量子的に記述するか？
→量子開放系の理論
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量子開放系とは

全系のヒルベルト空間をシステムと環境の直積空間とする

Htot = HS ⊗HE , Htot = HS ⊗ IE︸ ︷︷ ︸
システムのみ

+ IS ⊗HE︸ ︷︷ ︸
環境のみ

+VS ⊗ VE︸ ︷︷ ︸
相互作用

興味があるのはシステムの物理量 AS ⊗ IE の期待値

⟨AS(t)⟩ = Trtot [ρtot(t)(AS ⊗ IE)] = TrS

[
AS TrEρtot(t)︸ ︷︷ ︸

≡ ρS(t)

]

ρS(t)のMarkov的な時間発展は Lindblad方程式で表される
[Gorini-Kossakowski-Sudarshan (76), Lindblad (76)]

d

dt
ρS(t) =

1

iℏ
[H ′

S , ρS ] +
∑
k

(
LkρSL

†
k −

1

2
L†
kLkρS −

1

2
ρSL

†
kLk

)
クォーコニウム ⊗QGPの時に Lindblad方程式はどんな形か？

S E
HI

S

trace out E
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Lindblad方程式について

初期時刻でシステムと環境の相関がない場合

1. 時間発展で ρS(t)のトレースは保存し、正値性を保つ

ρS(t) = TrE
[
e−iHtottρS(0)⊗ ρE(0)eiHtott

]
,

TrS [ρS(t)] = 1, ∀|α⟩ ∈ HS ⟨α|ρS(t)|α⟩ ≥ 0

2. Markov極限では、トレースと正値性を保存する時間発展の生成子が以下の形に書ける
[Gorini-Kossakowski-Sudarshan (76), Lindblad (76)]

d

dt
ρS(t) =

1

iℏ
[H ′

S , ρS ] +
∑
k

(
LkρSL

†
k −

1

2
L†
kLkρS −

1

2
ρSL

†
kLk

)
, 一般に H ′

S ̸= HS︸ ︷︷ ︸
環境との相互作用

システムと環境の初期の相関 δρcorr があると、初期条件 ρS(0)を限定しないと正値性が保てなくなる
[Stelmachovic-Buzek (01), see also Peschukas (94, 95), Alicki (95)]

QGPの熱化の過程でクォーコニウムと相関が生じる可能性はあるが、以降では考えないことにする
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Lindblad方程式について

ミクロな理論からの導出：Born-Markov近似（相互作用表示）

d

dt
ρS(t) =

∫ ∞

0

ds ⟨VE(s)VE(0)⟩︸ ︷︷ ︸
環境の相関関数

[
VS(t− s)ρS(t)VS(t)− VS(t)VS(t− s)ρS(t)

]
+ h.c.+O(V 3)

▶ 量子光学的な領域
▶ 相互作用が離散的なスペクトルを持つ：VS(t) = e−iω1tṼS(ω1) + e−iω2tṼS(ω2) + · · ·

VS(t− s)ρS(t)VS(t) ∼ (e−iω1(t−s) + e−iω2(t−s) + · · · )(eiω1t + eiω2t + · · · )

∼ eiω1s
[
1 + ei∆ωt

]
+ eiω2s

[
1 + ei∆ωt

]
+ · · · 速い振動項を落とす（回転波近似）

∼ eiω1sṼS(ω1)ρS(t)Ṽ
†
S (ω1) + · · · → Lω ∝ ṼS(ω)

▶ 量子ブラウン運動の領域（←以下の話はこっち）
▶ システムの時間発展が遅い：微分展開で近似する

VS(t− s) ∼ VS(t)− sV̇S(t) + · · · = VS(t)− is[HS , VS(t)] + · · · → L ∝ VS − i

4T
V̇S + · · ·
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非相対論的近似（NRQCD）[Akamatsu (15, 20)]

▶ システムと環境の相互作用

HI = gA0(xQ)− gA0(xQc
) =

∫
k

(
eikxQ − eikxQc

)︸ ︷︷ ︸
= VS(k)

⊗ gÃ0(k)︸ ︷︷ ︸
= VE(k)

▶ Lindblad演算子

Lk ∼
√
D̃(k)︸ ︷︷ ︸

rate1/2 ∝ g

[
(eikxQ − eikxQc )︸ ︷︷ ︸
運動量移行 k の散乱

+O(ẋQ, ẋQc)︸ ︷︷ ︸
微分展開

]
+ O(g2)︸ ︷︷ ︸
摂動展開

-

か、 鄲た。、 る・ 一
-

0chtze.se/fenersy(aHJEL)cdlisions(LgI)

か、 が「訶が
S- Trees-@-_-圏-.eeの一

o r

self.euergy Collision s

モデル化するときは、複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))を与えればよい
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非相対論＋双極子近似（potential NRQCD）[Brambilla et al (17,18), Akamatsu (20)]

▶ システムと環境の相互作用

HI = −gE(R)r : R, rは重心、相対座標

▶ 双極子が小さい時、ゲージ不変で非摂動的な展開が可能 → 展開係数は物理量
▶ Lindblad演算子

L ∼
√
κ︸︷︷︸

輸送係数

[r + O(ṙ)︸ ︷︷ ︸
微分展開

] +O(r2)︸ ︷︷ ︸
small-r

-

か、 鄲た。、 る・ 一
-

0chtze.se/fenersy(aHJEL)cdlisions(LgI)

か、 が「訶が
S- Trees-@-_-圏-.eeの一

o r

self.euergy Collision s

未知係数：輸送係数（運動量拡散係数）κとハミルトニアンの熱的補正∆HS ∝ r2 の係数 γ
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クォーコニウムのカラー自由度のダイナミクス

システムのヒルベルト空間

HS = Hconf︸ ︷︷ ︸
相対座標 r

⊗Hcolor︸ ︷︷ ︸
= 1 ⊕ 8

ハミルトニアン：カラー 1重項は引力、8重項は斥力

H ′
S =

p2r
M

+ V (r) + · · · , V (r) =
αs

r
e−mDr ×


− 4

3
(singlet)

1

6
(octet)

Lindblad演算子：散乱と同時にカラー状態間の遷移が起こる

L ∼
√
D̃(k)(eikxQ − eikxQc︸ ︷︷ ︸

運動量移行 k の散乱

)⊗ {|s⟩⟨o|, |o⟩⟨s|, |o⟩⟨o|}︸ ︷︷ ︸
カラー遷移

+ O(ẋQ, ẋQc
, g2)

通常の量子ブラウン運動に加えて、カラー遷移のダイナミクスが混ざる
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クォーコニウムの量子ブラウン運動

（通常の）量子ブラウン運動 ⊗カラー遷移

Y or B + BQuantum Brownian motion
_

s

o
o

s

Color transitions

数値計算の前に知っておきたいこと：Lindblad方程式の定常状態、対称性
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Lindblad方程式の定常状態について

システムのヒルベルト空間が有限次元の場合
▶ 原理的には、ρ̇S = L[ρS ]の Lを演算子基底で展開した時のゼロモードを求めればよい
▶ 必ず一つ以上の定常状態が存在する（長時間平均）
▶ 定常状態が唯一つであれば、任意の初期条件からそこに緩和する（振動解はない）[Schirmer-Wang (10)]

無限次元の場合は、定常状態が存在しない場合すらある

環境が熱平衡にあることを仮定したが、システムは熱平衡状態に緩和するのか？
▶ 量子光学的な Lindblad方程式は、ボルツマン分布に緩和する
▶ 量子ブラウン運動の Lindblad方程式では、微分展開を NLOまでとることが重要である

c.f.古典極限（=Caldeira-Leggett模型）でボルツマン分布に緩和することは言える
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熱平衡化における微分展開のNLOの重要性

Lindblad方程式の定常状態はボルツマン分布か？（簡単のため、重クォーク 1個で考える）
▶ 微分展開の最低次（LO）の場合、詳細つり合いを満たさない

Lk =

√
D̃(k)eikxQ︸ ︷︷ ︸

pQ → pQ + k with rate D̃(k)

→ ΓpQ→pQ+k = ΓpQ+k→pQ︸ ︷︷ ︸
∵ D̃(k) = D̃(−k)

→ T =∞

▶ 微分展開の NLOまで残した場合、近似的に詳細つり合いを満たす

Lk =

√
D̃(k)eikxQ

[
1− kpQ

4MT
− k2

8MT

]
︸ ︷︷ ︸

rate への補正を与える

→
ΓpQ→pQ+k

ΓpQ+k→pQ

=

(
1 + ∆E

4T

1− ∆E
4T

)2

≃ e∆E/T

︸ ︷︷ ︸
∆E = EpQ

− EpQ+k ≲ T で誤差 3%

▶ 物理的には、LOで熱ゆらぎ（デコヒーレンス）、NLOで散逸効果が入ってくる
▶ クォーコニウムのカラー自由度についても、NLOで初めて Vsinglet(r) ̸= Voctet(r)が考慮される
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熱平衡化における微分展開のNLOの重要性

密度行列の空間における軌跡のイメージ

i
dedeine I Hutton

が dssipNon /
~ dissipat.eu

tsisyi 碓--.-
>.TT?-hn-_- fHs

>でしまい Stn = E

-
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クォーコニウムの Lindblad方程式の対称性

全系に対する対称性

システム : Ψ(x)
U−→ ΨU (x)

環境 : ϕ(x)
U−→ ϕU (x)

Lindblad方程式の対称性

ρS(r, r
′, t) = ⟨Ψ(r, t)Ψ(r′, t)∗⟩ U−−→ ρUU∗

S (r, r′, t) = ⟨ΨU (r, t)ΨU (r′, t)∗⟩

ρ̇S = L[ρS ]
U−−→ ρ̇UU∗

S = L[ρUU∗

S ]

U の例：Globalなカラー回転、パリティ、荷電共役
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Nc = 2の “spinor conjugation”対称性 [Kajimoto et al (in prep.)]

Nc = 2の時、もう少し強い対称性の制約がある
1. SU(2)は pseudo-realなので、反クォークの反カラーをカラーで書くことができる

↑̄ =↓, ↓̄ = − ↑

2. グルーオンからは、カラーの担い手は区別できない（矢印はスピンではない）

=

=

=

=

3. この対称性変換（S = spinor conjugation）の具体形

Ψij(r) ≡ ⟨R+ r/2, i︸ ︷︷ ︸
HQ

;R− r/2, j̄︸ ︷︷ ︸
anti HQ

|Ψ⟩

システム : Ψij(t, r)
S−→ ΨS

ij(t, r) = −ϵiℓϵjkΨkℓ(t,−r)

環境 : ϕ(x)
S−→ ϕ(x) (不変)
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Nc = 2の “spinor conjugation”対称性 [Kajimoto et al (in prep.)]

4. S の固有値 ±1（∵ S2 = 1）

S = 1 : parity-odd color-singlet or parity-even color-triplet

S = −1 : parity-even color-singlet or parity-odd color-triplet

5. Lindblad方程式は以下の密度行列に対して同じ

⟨Ψ(r, t)Ψ(r′, t)∗⟩, ⟨ΨS(r, t)Ψ(r′, t)∗⟩, ⟨Ψ(r, t)ΨS(r′, t)∗⟩︸ ︷︷ ︸
→ より強い対称性の制約

, ⟨ΨS(r, t)ΨS(r′, t)∗⟩

よって、S-選択則が成り立つ

[ρS(r, r
′, t)]singlet = ∓[ρS(−r, r′, t)]singlet = ∓[ρS(r,−r′, t)]singlet

[ρS(r, r
′, t)]triplet = ±[ρS(−r, r′, t)]triplet = ±[ρS(r,−r′, t)]triplet
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Nc = 2の密度行列の時間発展 [Kajimoto et al (in prep.)]

デコヒーレンスを受けても長距離相関が残る

楚蘂
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Nc = 2の密度行列の時間発展 [Kajimoto et al (in prep.)]

デコヒーレンスを受けても長距離相関が残る

Octet |ρo(x, y)|2
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数値計算の現状

多くの数値計算で、混合状態の波動関数のサンプルを生成する（stochastic unravelling）

NRQCD pNRQCD

クォーク間距離 大きくても可 小さいとき
結合定数 弱結合のとき 強結合も可
数値計算 1次元が限界か 回転対称な 3次元計算は可能

NRQCD 散逸 数値計算法
1次元、U(1) なし 確率的ポテンシャル [Akamatsu-Rothkopf (12), Kajimoto et al (18)]

3次元、U(1) なし 確率的ポテンシャル [Rothkopf (14)]

1次元、SU(3) なし 確率的ポテンシャル [Sharma-Tiwari (20), Kajimoto et al (in prep.)]

1次元、U(1) あり Quantum state diffusion法 [Akamatsu et al (19), Miura et al (20)]

1次元、SU(3) あり Quantum state diffusion法 [Miura et al (in prep.)]

1次元、U(1) あり 密度行列の時間発展 [Alund et al (21)]

pNRQCD 散逸 数値計算法
S+P波、SU(3) なし 密度行列の時間発展 [Brambilla et al (17, 18)]

3次元、SU(3) なし Quantum jump法 [Brambilla et al (20)]

1次元、SU(3) あり Quantum state diffusion法 [Miura-Kaida et al (in prog.)]
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2

 

-20 -15 -10 -5  0  5  10  15  20

Mx

-20

-15

-10

-5

 0

 5

 10

 15

 20

M
y

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mt=0  

-20 -15 -10 -5  0  5  10  15  20

Mx

-20

-15

-10

-5

 0

 5

 10

 15

 20

M
y

-1

-0.5

 0

 0.5

 1

Mt=0

Singlet基底状態
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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Singlet基底状態 → Octetに双極子的に励起
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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Singlet基底状態 → Octetに双極子的に励起 → Octetでデコヒーレンスを受ける
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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Singlet基底状態 → Octetに双極子的に励起 → Octetでデコヒーレンスを受ける
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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Singlet基底状態 → Octetに双極子的に励起 → Octetでデコヒーレンスを受ける → Singletに脱励起
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NRQCDの Lindblad方程式：密度行列（空間表示）[Miura et al (in prep.)]

複素ポテンシャル V (r) = VDebye(r)− i(D(0)−D(r))のモデル化

VDebye(r) = −
0.3

r
e−2Tr, D(r) =

T

π
e−(Tr)2 , T = 0.1M → QGPの “分解能”ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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Singlet基底状態 → Octetに双極子的に励起 → Octetでデコヒーレンスを受ける → Singletに脱励起
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NRQCDの Lindblad方程式：熱平衡化 [Miura et al (in prep.)]

固有状態の占有確率の時間発展
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環境の温度のボルツマン分布に漸近する
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NRQCDの Lindblad方程式：熱平衡化における量子散逸の効果 [Miura et al (20)]

固有状態の占有確率の時間発展
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散逸なしではどの状態も同じ占有確率に向かう
早い時間から違いが出る
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pNRQCDの Lindblad方程式 [Brambilla et al (20)]

▶ 初期条件：ガウス波束
▶ Lindblad方程式：

- パラメタ κ, γ（格子計算）
- 散逸なし（ṙ 項を無視）
- Quantum jump法

▶ QGP温度：
- 流体中の経路平均 ⟨T (t)⟩path

▶ Freezeout：
- 励起状態（2S, 1P, 3S, 2P）
の Feeddown

p n

K
π
D

B
J/ψ
Y

A

A

hard collision hydro expansion

freezeoutthermalization

Reasonableな κ, γ で実験データを説明できる
しかし、双極子近似の適用外（20a0 ∼ 4fm≫ 1fm ≳ 1/T）

さらに、量子散逸の効果も含まれていない
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pNRQCDの Lindblad方程式 [Brambilla et al (20)]

▶ 初期条件：ガウス波束
▶ Lindblad方程式：

- パラメタ κ, γ（格子計算）
- 散逸なし（ṙ 項を無視）
- Quantum jump法

▶ QGP温度：
- 流体中の経路平均 ⟨T (t)⟩path

▶ Freezeout：
- 励起状態（2S, 1P, 3S, 2P）
の Feeddown
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Figure 10: RAA of singlet S-wave states versus Npart taking into account excited state feed
down. The bands shown in the left and right panels correspond to the variations detailed
in the caption of figure 6. The data points are from the ALICE [96], ATLAS [97], and CMS
[94] collaborations. The experimental error bars were obtained by adding statistical and
systematic uncertainties in quadrature.

In the case of pp collisions, one can convert the direct production cross sections into
the post feed down cross sections by multiplying a vector containing them by the feed down
matrix ~�exp = F~�direct with

F =

0

BBBBB@

1 0.265 0.184 0.0657 0.0650

0 0.735 0 0.1060 0.0946

0 0 0.816 0 0.0047

0 0 0 0.8283 0

0 0 0 0 0.8357

1

CCCCCA
, (6.4)

where the vectors ~� collect the experimentally-observed and direct cross sections for the
{⌥(1S),⌥(2S),�b(1P ),⌥(3S),�b(2P )}. Also note that, knowing the experimental values
for the production cross-sections ~�exp, one can compute the direct cross sections via ~�direct =

F
�1

~�exp. We take the experimental cross-sections to be �exp = {57.6, 19, 13.82, 3.36, 2.07} nb
based on refs. [92–95].

To compute the effect of final-state feed down in AA collisions, we first construct a
vector ~NQGP containing the numbers of each state produced at the end of each simulation
(survival probability ⇥hNbin(b)i ⇥ ~�direct). We then multiply the result by the same feed
down matrix used for pp feed down, i.e. ~Nfinal = F ~NQGP. The use of the same feed down
matrix for both pp and AA collisions is related to the fact that feed down occurs on a
time scale that is much longer than the QGP lifetime. After the feed down is complete, we
compute the post feed down RAA for each state by dividing the final number of each state
produced by the average number of binary collisions in the sampled centrality class times
the post feed down pp production cross-section for that state (�i

exp).
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Reasonableな κ, γ で実験データを説明できる

しかし、双極子近似の適用外（20a0 ∼ 4fm≫ 1fm ≳ 1/T）
さらに、量子散逸の効果も含まれていない
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pNRQCDの Lindblad方程式 [Brambilla et al (20)]

▶ 初期条件：ガウス波束
▶ Lindblad方程式：

- パラメタ κ, γ（格子計算）
- 散逸なし（ṙ 項を無視）
- Quantum jump法

▶ QGP温度：
- 流体中の経路平均 ⟨T (t)⟩path

▶ Freezeout：
- 励起状態（2S, 1P, 3S, 2P）
の Feeddown

Figure 3: A comparison of the overlap of an initial Gaussian state of width c = 0.2 with
the lowest lying Coulomb states and the expectation value of the radius computed using
QuTiP and the QTraj algorithm. Curves and simulation conditions are as in figure 2. The
gray band denotes the area where the wave-function hits the edge of the lattice, i.e., finite
size effects become relevant, which occurs at t = 1.3 fm (see text for discussion).

may be deduced also from the shrinking of the average radius after an initial expansion in the
last plot of figure 3, differs between QuTiP and QTraj. We attribute the late time (small)
discrepancies in the expectation values between the two programs to this phenomenon.
Since we find that a Gaussian wave-function evolved in QuTiP hits the edge of the box at
approximately t = 1.3 fm, we take t > 1.3 fm as the region where finite size effects become
significant. When running the QTraj code to simulate our final results for the quarkonium

– 16 –

Reasonableな κ, γ で実験データを説明できる
しかし、双極子近似の適用外（20a0 ∼ 4fm≫ 1fm ≳ 1/T）

さらに、量子散逸の効果も含まれていない
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クォーコニウムを量子開放系として記述することで、QGPの基本的な物理量が推定できる
▶ NRQCD：QGPの基本的な長さスケール（デバイ遮蔽長と分解能）
▶ pNRQCD：運動量拡散係数 κと自己エネルギー係数 γ

クォーコニウムの Lindblad方程式は未完
▶ NRQCD：クォーク間距離の制限はないが、非摂動領域ではモデルでしかない
▶ pNRQCD：非摂動領域でも適用できるが、双極子近似が使える状況は短時間のみ
▶ T ≲ 200MeVでは量子ブラウン運動の仮定が破れるかもしれない

QGPの相関時間 ∼ 1

T
≪クォーコニウムの軌道周期 ∼ 1

∆E
∼ 1

110MeV

Lindblad方程式のシミュレーション
▶ NRQCD：密度行列がデコヒーレンスし、量子散逸とバランスすることで熱平衡化する
▶ pNRQCD：本格的なシミュレーションが始まった
▶ NRQCDと pNRQCDのシミュレーションを比較することで、双極子近似の妥当性を検証したい
▶ 量子コンピュータを用いたシミュレーション? [Hu-Zia-Kais (20), de Jong et al (20)]
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