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What is glass?

Disordered Ordered Disordered

Flow No flow No flow



log (viscosity /P)

Glass transition

Viscosity vs 1/Temp. Relax. Time vs 1/Temp.
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€ Dramatic slowing down of the dynamics with
decreasing temperature

€ When the relaxation times become larger than the experimental
time scale, liquid practically becomes solid.



Glass transition

20
i@ ortho-ter-
=
§ 12 A
2 8 ~ ex
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=
o
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4
0.000 0.005

1/Temperature

@ Slowing down of the dynamics can be well fitted
by the diverging function

@ Suggests the phase transition at T,

€ But, no experimental results at around T,...



Vibration of glass

€ Macroscopic solids obey the elasticity equation

0%
P ar
@ Plane wave solutions (Phonon)

= A+ u)VV - @+ uVv3a

® Vibrational density of states (vDOS) follow Debye law D(w) o w?

€ vDOS of real glasses

@ Example: Glycerol, measured by
scattering experiments

@ Peak at around 1 THz is called
Boson peak.
- “excess” of low energy vibrations

€ Not so much was known for
lower frequency region.

W 1[THZ]

Debye

2

Monaco-Giordano, PNAS 2009

law



Heat capacity in low T regime

| Two-level system scenario:

I T T T
p— 4
= /
O /i |
- #7740 Pyrex e >
X
3 St }nn @ ‘“"u’u,u: -1 20
.6 © g” a v
L] by C
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O =z s . Crystalline CICJ
=) «E -6|_ . V Si0, . + €2
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Q 5 Si0;— o

] Crystal: ':*3

Coordinates for some group of atoms

Glass: TTﬂ’éé' f K I If double-well structure is present in
T the energy landscape, transitions
Temprature T between two states may take place
(thermal activation or tunneling),
C~T at T<1K which gives the additional

contribution to the heat capacity
Anderson et al./Phillips 1971

Zeller, Pohl PRB 1971



Big Questions

Q1 Glass transition (thermodynamic transition to

glass) exists?

N N e e . : .
Yes, in infinite dimension: Mean-field theor
Hamiltonian U = Z Z v(ry;) ’ Y
T Parisi-Urbani-Zamponi, “Theory of simple glasses” (2020)
_BF = p(1 — log p)+ N fs . Notknown, in finite dimension
. : Berthier-Biroli, Review of Modern Physics (2011)
virial expansion

Q2 Anomalous solid state properties of glass can be

understood?

924 Phenomenological mean-field theory

Glass = Solid with spatially fluctuating elasticity
Can predict boson peak

(10 — p10)? Can not predict low T anomalies
(_ ) e.g. Schirmacher-Scopigno-Ruocco JNCS 2015
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Q. How glasses approach
the continuum limit?

Numerical simulation
on BIG system

Mizuno-Shiba-lkeda, PNAS, 114, E9767 (2017).



€ Model -

N N = Finite range
U = Z Z U(?"z‘j) = repulsive particles
i j>i
From N = 16,000 up to 2,048,000 > r
Periodic boundary condition
@ Preparation of glass
From fully random initial configuration, we perform
the energy minimization A
dr; oU
e.g. steepest descent = —y—
dt 8?“?; ®
This gives a local minimum, which is a glass.

Different initial configuration gives different local
minimum, but we focus on the universal properties




Model

€ Focus on harmonic dynamics
around a local minimum

— —

Ty = T4,0 T Uy

du 0*U

— =Hu+O(u’) Hijj= -

dt ( ) J T‘i?"j
dynamical matrix

@ Diagonalize the dynamical matrix numerically.

Hek — )\k € k-th eigenmode

D(w) = Z 5(0.? — \/ )\k) vibrational density of states
k
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€ We found the Boson peak.

@ |n further low frequency regime, vDOS
approaches to the Debye level, but only slowly.

analyze carefully



Analysis of the modes

Mazzacurati, Ruocco, Sampoali,

Participation ratio of vibrational mode k: EPL 1996
pk =2 1
N N ko k)2
Zj:l (ej ej )

1. Only one particle vibrates:
k
|::> P" = —
ef =0(j=2,3,..,N) N

2. All the particles vibrate equivalently:

1
e?:\/—ﬁ (J=12,..,N) |:> PF =1

Fraction P¥ of total particles participate in the vibrational mode k



Analysis of the modes

Phonons (elastic waves) in isotropic medium under periodic boundary:
ek,a . pk,a

’ VN
k= (2x/L)(i,j, k) : wave vector

exp(ik-'r?), WL . = Co|k|, co =/ Ms/p,

Expansion by phonon modes (Fourier expansion) of vibrational mode k:

ef =S Ak ebo ) |4 * N0k =1
’ k,or 7 :> k,a k,cr : k,cr ’

Overlap of vibrational mode k, with phonons:

Ok _ Z OZ o 1 : Phonon
’ () : Non-phonon

. Ok N
{kaaa O zﬁ

- } (N,, = 100)



Analysis of the modes

i Transverse
== phonon

- e —r =
SRy 1 ] by
e < L.

¥ b X d ¥ &

& gl S 7 P gk, e

3 Spatially
SN Jocalized

Ph‘
o

e
F p ” .

Phonon modes and
localize modes coexist in
low frequency regime

(=

10



Phonon and localized modes

Agw? x w?
Debye law  Non-Debye law of localized modes



Lennard-Jones glass

Localized modes are
universally present in many
different glasses

Shimada-Mizuno-lkeda,
w Phys. Rev. E 97, 0226009.



Q. How particles

4 | Vvibratesin the
localized

N _ modes?

90

60

30

0

Shimada-Mizuno-Wyart-lkeda, Phys. Rev. E 98, 060901(R).



Vibrational energy

For an eigenvector ek, the energy between an
interacting pair (ij) is

1
Yij
2 A
k _ | —fj ( 1)2
= () - 6 by
parallel  perpendicular P

> () <0

where r;; is the distance and fj; is the force
between the pair (f; > 0 for repulsion).



Vibrational energy

The vibrational energy for i-th particle is

1

jeoi

negative energy

}

AN L > UH
Amplltude 'n d Core




Vibrational energy

/\(r)/ ‘/\(gminﬂ

* Core part has negative energy = Unstable
* Far-field part has positive energy = Stabilize the core



Summary

@ We use large-scale numerical simulation to study the low
frequency vibrations of structural glasses.

@ Low frequency part of vDOS is

D(w) = Dex(w) + Dige(w)

X w2 x w

Phonon Localized mode

@ Localized mode = Unstable core, which is stabilized by the
far-field component (supported by the surrounding medium)

@ Localized modes are “gapless” modes
@ Glass has weak spots which do not have characteristic energy scale
— “Glass is marginally stable solid”
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Glass transition

€ Heat measurement of supercooled liquids

Entropy

- Config. Entropy

a4 Crystal

Temperature
€ Experimentally, configurational entropy is defined as
Sc = Sliquid — Svibration ~ Sliquid — Scrystal

@ Estimates of number of different configurations



Glass transition

Increase of the viscosity and decrease of 20
the config. entropy can be fitted with 16 |
functions with same critical temperature 8 '

A
N ~ exp T—Tr

Se~1—=Tk/T 0.000

ortho-ter-phenyl

Log [viscosity]

1/Temperature

— Indicate the existence of equilibrium

glass transition Ty = 202K

— ldeal glass transition = Viscosity
diverges & Config. entropy becomes
zero in equilibrium

Configulational entropy

o

. 0.003 0.004 0.005
But, we are still far from T,... e —



Q. Glass transition can
exists in finite dimension?

Ozawa-Kob-lkeda-Miyazaki, PNAS 112, 6914 (2015).
Ozawa-Kob-lkeda-Miyazaki, PRL 121, 205501 (2018).



Random pinning

@ Equilibrate a liquid at
temperature T

€ Pin some fraction of particles
(fraction c). Then consider
thermodynamics of remaining
mobile particlesat T

@ Of course, the liquid freezes
atc=1.

€ Q. Does the liquid freezes
evenatc<1?

@ Glass transition using c as a
control parameter




Why random pinning?

@ Positions of pinned particles
are taken from equilibrium
configurations

@® We do not “insert” pin particles

@ Thus, the pinning does not
disturb structure

@ If the original liquids are
equilibrated, we do not need to
equilibrate the pinned system

[Kob & Berthier, PRL 2013]




Simulation

€ Two component Lennard-Jones (system size: N=300, 1200)
- (%ap . ("”_ué"ﬁ
H&E{}"] =4€,p - ] -\ — ] i

@ Equilibrate the fluid state without pinning

@ Select particles randomly with the probability ¢ and pin
them.

@ Replica exchange MC simulation of the mobile particles
to calculate various equilibrium physical quantities.

@ Perform many different realization of pinning and
average over them



Overlap

Qap — Z O(a — |ri(a) —ri(8)]) € Sample configurations
a=0.3 appearing in the different
Prob. distribution of q replicas
o e {7i(e)}, {7(B)},
- 1=0.7 - 1=0.45 -
6] fot J1g] 0 o2} € Measure the
1 similarities between
E 12'_ c %.:3'12' [| 1T them
=, |

@ High T: Smooth change

€ Low T: Discontinuous
change

00 02 04 O0E 08 10 DD DzZ 04 0B 08 10

q q



Overlap

Qo = Z 0(a — |ri(a) — 7 (B)]) € Sample configurations
a=0.3 appearing in the different
Average of g replicas
1.0 — . —
| e | A7)}, {T(B)}, -
08- / '_. 1 @ Measure the
1 | 1 similarities between
[ ] 0.6+ LOW 1$3(73 1 them
@) ’ T1os ]
04 /ﬂ e Q1 4 Phase transition into
/ T=0.45 |
H|gh e T0M the frozen state takes
02- 1 placeatlow T




Entropy

B
@ Calculate entropy oS
S(B«) =S(0) + —d
(3.)=50)+ | FFa8
0
n ® 105
25] m :ggs_
l\. @ T=0475
S T=045
2.0{\.\ ‘\.\.. |
. s  —hm g

S 1.5;‘(v \\!!1‘\'\ -

o % |

05 _

00 1 1 1 1 1 1
000 005 010 015 020 025 030

C
@ Bending of the entropy at ¢ < 1 = Phase transition is
accompanied with the bending of entropy = Ideal glass!



Phase diagram

08 T T T T T T 1
Ideal glass line from Ideal glass line from

0.7 overlap config. entropy
0.6- //<>/ ////Q/QQK i
1 fluid o 0660 -
T os. Sy ot -

\
] & ]
04- R i
(O‘Q —4&— overlap
1 glass —@— entopy |
0.34 i
000 005 010 015 020 025 030 035

C

@ At lower T, the overlap and entropy approach give the same
glass transition temperature - Clear ideal glass transition



Nature of the glass

@ Traditional expectation on the glass phase: (Harmonic) vibration
around the most stable amorphous configuration



Dynamics

@ Time evolution of the overlap  ¢(¢) = Z O(a — |ri(t) —7i(0)])
2 a=0.3

(b)
0.55
095 —=e— Entropy
e 0.50. ——Overlap | ~ N
S .
= s TP Dashed vectors:
045] TV 4 m-m-m- . ..
0.90 1 s Long time limit evaluated
S ] R . by the replica exchange MC
) 0.1 0.2 1
C
0.85

LELELLLLL | LELELRLLLL | LR | LELELLLLLL | LELELLLLL | LELELRLLLL | L | LELELLLLL | L
10° 10° 10? 10° 10* 10° 10° 107 10®

t

@ Plateau at intermediate time scale is originated from the small vibration around
a single configuration.

€ Not vibrational relaxation is present in the long time regime



Dynamics

@ Starting from the instantaneous configurations in the MC simulations, we
perform energy minimization to find the nearest local minima

—> Time series of local minima

T T T T T T T T T T T T T T T
_7.46 4 Sample 1 i ) i )
| Samiple 2 7.46
Sample 3 ]
-7.48 4 P .
| Sample 4 | -7.48 1
~~ -7.50- -
\4:; 1. ., m e - -7.50 1
L 752 . ~n 1 '
m -Jmu-—u—mm-—nnﬂ_u_l]_ﬁ_‘_ m_‘ -752 | ]
-7.54 . ] ]
-7.56 4 ] ]
] -7.56 - y
7.58 (a) . . : : 1(b)
0.0 20x10°  4.0x10° 6.0x10° 8.0x10° 10x10° -7.58 - . - . - . - . :
t 0.0 2.0x107  4.0x107 6.0x107 8.0x107 1.0x10°%

t
@ Short time: Basically, stay in the same local minimum

@ Long time: Explore many different local minima



Nature of the glass

@ Traditional view on the glass phase: Harmonic vibration around
the most stable amorphous configuration

@ Results mean that many (slightly different) configurations
contribute to a single ideal glass state!




Analysis of the entropy

07 T T T T | T 1 4 1
0.6- Fluid + Ideal glass ]
g 0_5_-. ' i
g 0.4—_ _ ] 0_8-
> 0.3 - 0.7+ © 0
! 0.2 4 L ; ] | 0~6'_ Fluid Y o
i i N=300 - _
b 0.1+ + 2. ® ® T0-5 ‘6“ >
- N=1200 1 04- o overtay |
0.0 o Ideal glass ~ ——entory |
-0.1 14 : . : r — : : . 000 005 010 015 020 025 030 035
0.00 0.05 0.10 0.15 0.20 C
C
@ Indeed, simple vibration cannot explain the entropy of the glass
phase (S-S, ~ 0.1)



Summary

Vibration
@ Low frequency part of vDOS is

D(w) = Dex(w) + Dige(w)

X w? x w

Localized mode

@ Localized mode = Unstable core, which is stabilized by the far-
field component (supported by the surrounding medium)

@ Glass is marginally stable solid.
Glass transition

@ Entropy bending and overlap jump take place simultaneously.
—> Ideal glass state exists in the randomly pinned fluids.

€ Non-vibrational dynamics are observed in the glass phase,
giving the additional contribution to the glass entropy.
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