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"Partons” In condensed matter and high energy physics
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Midinfrared weights of Reo(w) for hole doped Mott insulators

Experiment Theory

Two-dimensional system:
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- Upon doping, spectral weights appear at mid-infrared (MIR).




Midinfrared weights of Reo(w,t) for photodoped Mott insulators

| | |

a |
£y 05 40.3 N
O @)
Q,\ O ;\;—“_O Q.\
A X " -
AODpco (x4) 7y P AOD | co (x4) ‘
© -0.5-1% electron ‘ /7 2% hole ‘\ 103 =
dope \o dope ’

I l

—06 . Upon photodoping, spectral weights
0.09 appear at MIR.
0.06

- 2.25 eV pump 4

0.03

LU T oy | T Y ravy_zml Y 0
[OD(340 K) . [OD(340 K)
0.05r_0p (292 K)] (x2.1) | ~OD(292 K)] (x2.5)

0 1 2 0 : >
Photonenergy (eV)

H. Okamoto ef a/., Phys. Rev. B 83, 125102 (2011)



String excitation

We focus on the Mott Insulator with a single hole.

Strings picture Strings are classified In two categories.
D-O-P-P O-D-P-] (@52 strings
; AN /T Z strin r ner hich n |
M- >®®-‘*~ ) e S .Sj[ | Igs a.te. gebe a’;_ed by ]Z,tw tlcl bou d: ho:etto zt/k;elr
| original position by a linear potential proportional to J,’".
OO0 O D
O-O—D- OO0 e §Z strings are relaxed/repairable by quantum spin flips
L once J, Is Introduced.
QD=1 D—D S. Schmitt-Rink, et al., PRL 60, 2793 (1988)
| C. Kane, et al., PRB 39, 6880 (1990)
CD_CD_CHD G. Martinez and P. Horsch, PRB 44, 317 (1991)
Oa0R020

A hole becomes a mobile object, which carries a local spin

A hole moves in an AFM state. distortion called spin polaron.

—> miss-arranged spins with
respect to their sublattice

—> string-type excitation of
sSpiNs
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Phase strings

—> | S* strings / phase strings
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Marshall sign rule(T1)

W. Marshall, Proc. R. Soc. London Ser. A232, 48 (1955)
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Marshall sign rule(2)

W. Marshall, Proc. R. Soc. London Ser. A232, 48 (1955)

CDEHIIT U, HIZIERHEEZ (TR,

KT, \¢>m).=v(ﬁ5|u>ﬁ}.='%’(u$@ L A=Y R dAY)
JZ ¢'|S7S3|¢

—JZ (1| S7S7 |




Marshall sign rule(3)

W. Marshall, Proc. R. Soc. London Ser. A232, 48 (1955)
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Marshall sign rule(4)

W. Marshall, Proc. R. Soc. London Ser. A232, 48 (1955)
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phase string D4 9 FEFATEHIR S —

Z-Y. Weng, et al, PRB b5, 3894 (1997)
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Phase strings

@ S* strings / phase strings (PS)

® Irreparable by quantum spin flips
® Nonlocal guantum interference
® Responsible for an intrinsic self-localization

of the injected hole in two dimensions. +" (=) : The sign obtained when the
hole exchanges its position with T ({)
D. N. Sheng, et c’:?/., PRL 77, 5102 (] 996) Spin during its motion
Z.Zhu, et al., Sci. Rep. 3, 2586 (2013)

The hole hopping leaves a string of signs (phase strings)
behind it, which is sensitive to the configuration of spins.

|

Quantum destructive interference plays a fundamental role
INn describing the long-distance behavior of the hole.

F=hMriviallZ iR 24 :
« Half filling
« Nagaoka ferromagnetic state



Phase string theory in the Hublbard model (1)

Hubbard model H =H' +H'

Slave-fermion formalism
i o = (—0) (hlb; o + (fbjl_gd.i)
hl: fermionic holon creation operator
d;: Tfermionic doublon annihilation operator
b; . bosonic spinon annihilation operator

(—o)! is introduced to take into account the
Marshall sign, which gives an exact

description of the ground state at half filling.

Constraint on physical Hilbert space
hih; +dld; + b] ;1 +b] b | =

H = -1, {79, ;+87, -8 ] +He.,

/3]
=U ) did;,
J

where
Pij=y (bl bl _ hid;+b bl _

it ] O @—)@ @

creates a spinon pair and annihilates a holon and

doublon pair
OO=®WO

30 __ 11 8 O S
SLJ] —b,}_gbj’gh:'jh,,; -t b'[:’gbj,()'(ljd7:
swaps a holon/doublon with a spinon with spin o.

guantum interference

lbert space with the basis

bjy g b e [0

The partition function is given as (high-temperature
expansion)

Spanning the
{loy =dj ---hf
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Phase string theory in the Hubbard model (2)

Using positive-definite weight W, [c] for a closed

path c,
Z=2 (1

L. Zhang and Z.-Y. Weng, PRB 90, 165120 (2014)

\ [( /‘/l

The sign factor Is written as
Nld| = NP[d + Nild] + Nild + Ny d]
/ \

The fermion signs of holons and doublons

(ND: the total number of a-b exchange)

One hole case:
Nlc] = Ny[e]+Nglc]

In the Iimit of U > t;, doubly-occupied sites vanish
Nle] = Ny [¢

If we change the sign of hopping involving the
exchange of a holon/doublon and a | spin

accompanied by —thSU, we can remove phase strings.

The removal of phase strings is done by U(1) nonlinear
transformation as

1) (e 1 (1 = 1) = €. 4]

1)d(=1)te; .

We obtain phase-string-removed model for the Hubbard model

dS
He=—tn 3 |e40ic] 50+ He|+UY Ay,
(i.3).0 j

AZ; = ¢ (ti—g + fj—o + 1) CI

| o

A gauge field that cancels out the Aharonov-Bohm
phases arising from a flux bounded to down spins

= (0, ¢)

Using #H,, we can turn off phase-string effects.
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Motivation

It Is unclear how MIR weights actually are related to string excitations that are
the result of a complex process.

Purpose

Isolating the unique effects of phase strings, we Investigate how much S# and phase
strings contribute to the MIR weights of Reog(w).



Model and method

Hubbard model

H=—th > (cloCio+¢|,ci0) +U D nignsy
<’i,j>,0’ <1’77>

HE) = —t5 Z (c;-rjacj,g = C;L"O—Ci,a> -+ Z [JL(S{FS; 23 Si_s;r) £5 JzSizSyz']

(i,5),0 (,5)
Electric field is introduced via the Pelerls substitution

czgcj,(, - e“A(t)RUCwC] o A(t) = (Ax(0),0)
AL (t) = Age~tto)” /(th)cos[ﬂ(t —ty)] A, = 0.001
j(w)

Optical conductivity Reo(w) with o(w) = (@ + iy)LA(@)

The time evolution of wave functions is calculated with the

Lanczos and DMRG method under open boundary conditions.

y

o 0 0 O
L, =72
O O O ¢

Black: with PS
(Ly,Ly) = (20,2) Red: without PS
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AT\ U

000%Y" / 7K\‘

2 4 6 8101214161820
J

Staggered spin modulation disappears
with the removal of phase strings.

v

The formation of the Nagaoka polaron
even for the intermediate U
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Dlack Wih P Re(w) of the Hubbard model with a single hole

(Ly, Ly) = (6,2) (Ly Ly) = (20,2)

(a) j -

03 "1

03]

4t7

‘wMIROCJZT

® The removal of phase strings
reduce spectral weights at MIR.

® The contribution from S# strings
remains, but is small.

Re o(w) (arb. units)
Re o(w) (arb. units)
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Black: with PS

. : KS, S. Sota, and T. Toh ,
ok withot PG Re(w) of t — ] model with a single hole A ng%;g‘] 1 208
(Ly, Ly) = (20,2)

M =ty Y [(—,,;;a,,(,;u.cfl 2Ts — _ Z [(—_.;;(_—;J._F, ;H.(-.] - The same behavior in MIR weights for t-J
()0 | ke model as for the Hubbard model
0.07/ +J) Si-S; 0.07! +J: ) SES;
(i.7) (2,7)
] =05 ], =05]|" Strings consist only of §# strings for t-J,
model.
il | \/ | —> Reo(w) does not change betore and
~ 3 after we remove phase strings.
ol -
: x
000+ ———F———— 000+
G = (b) = HTE =—ty Y [ET é +Hc] ' ' '
E J=1 S - 2 [fese t el e Strings consist only of phase strings for
€ % +J1) [SPSy+8YsY]. t-JL. model.
© 0.07y o Y |  —> We can completely eliminate the
- Ji =0.5 effect of strings by removing phase
strings.
Al
i
M . Phase strings play an important role in
000> TS 000 . understanding MIR weights compared
0 2 4 6 0 2 4 6

to §# strings.
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A(k,, w) of the Hubbard model

Agy () = A (k) + AP (B, ) - Without phase strings, the upper and lower Hubbard bands
AT ) = — Lm0 have cosine-like dispersions.
G(e)(k (,U) :<¢ ‘Ck ! CT ‘w > . . . .
o A\ R T H— By +in &« The removal of phase strings eliminates a nontrivial U(1)
G (k) =(nlcl g lt) phase, which suppresses string excitations emerging in single-
hole dynamics.
(Lx,Ly) = (6,2) KS, S. Sota, and T. Tohyama, PRB
103, 035141 (2021
IWith phase stringsl IWithout phase StringSI ARREEEELED el )
. Ay (k,, w) obtained :
A k ) ATL’ kx, I 0 X
Aolle @) — B o ) = = - . by the Hubbard-|
8 ° 8 51 - — E 10— ] :
°1 . 1.0 6!_ _! 1.0 6‘F- —- 1.0 ° - - 1.0 E 1.0 E
4 e 1. AT e 4- — 0.8 41 - 0.8 i 5V 0.8 E
%] 0.6 2 0.6 27 0.6 2 0.6 : 0 0.6 E
0 0.4 3 % 0.4 3 0 04 3 O 0.4 I 04
2 , - . 2 -2 | ' -sivi 0.2
P e T -4 e 4l . I — | I 0
. - >0 e >0 — — 0.0 - 0.0 V=1L, ;
- ] =61 | —6 - - : 3 -2 -1 0 1 2 3
1: o W 1 S ~ String excitations are
coe R I TE . completely ignored.
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Summary

- Using time-dependent Lanczos and DMRG, we have calculated Reo(w) of the

Hubbard and t —J ladders with a single hole.
- [solating the unique effects of phase strings, we have investigated how much 54

and phase strings contribute to MIR weights of Reag(w).

- We have found that the MIR structure of Reos(w) IS dominantly contributed not
from S# strings but from phase strings for the hole-doped Hubbard and t —J
ladders.

- It we remove phase strings, no phase is picked up by a doped hole. As a result,
a spin-polaron accompanied by a local spin distortion emerges and a
guasiparticle with a cosine-like energy dispersion is formed In single-particle
spectral function.
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Phase string® & B&
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U(T 1) topological gauge field




(Ly, Ly) = (6,2)
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A(k,, w) of the Hubbard model
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The equation of motion for the Green function

Electron annihilation operator is splitted into the two parts:
Cioc — fi,a 3 9i,o

with
fi,o :ﬁi,—aci,aa /[fi,aaHI] — Uf’i,O’\
Gi,o :(1 _ ﬁi,—U)Ci,U _ [giafﬂ HI] =0 _

Defining the Green function
Ga,ﬁ(kv T) — _<Tak>U(T)B;£:,J>

with o, 8 € {f, g}, the equation of motion is written as

9,
OT

Go,p(k,7) = 6(T)({Bh» ks }) — (T[athe,o (1), H] By ,)-



The equation of motion for the Green function

th
gip H'] = > Y crt&ip—tn Y clciycis

JENN(7)

Eir= D (¢S +¢157)

JENN(2)

b, ~
gin Hi 1~ =5 ), it

JENN(7)

JENN(2)

The coupling of a hole to a pairing excitation
--> significant contribution only for U < 0

Scattering process related to transverse

component of spin S~ disappears tor phase-
string-removed model.
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