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Quantum tunneling

One-dimension Multi-dimension

V(g)
A

>




Classical dynamics in nonintegrable systems
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Poincaré section
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Trajectory on a constant energy surface H(q1, 42, p1,92) = E



Quantum tunneling and complex path
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Dynamical tunneling and complex paths
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How are disconnected regions connected ?



Tunneling splitting in 1D and 2D
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Stretched exponential decay of tunneling splittings
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Poincaré section and area-preserving maps

2-D autonomous Hamiltonian H(q, g2, p1, p2)

Area enclosed by a closed loop C on the constant energy surface p1

S[C]=§p°dq
c

is preserved along the Hamiltonian flow:

SICI = SIC’]

Poincaré map F : X — X is area-preserving (symplectic)




Area-preserving map and mixed phase space

Area-preserving map
()-8
q’ q+p

Kicked rotor

1 (Se)
H(q,p, 1) = Sp* + V(g) Y 5t —n)

n=—oo




Area-preserving map and mixed phase space
Area-preserving map
(7))
q q+7

Forbidden process in classical dynamics

AN F(B) =0 for Vn, if A, B(€ R) are dynamically separated.




Area-preserving map and mixed phase space

Quantum map

Propagator

K(a,b)=(b|ﬁ"|a)=f“°f dg; dp; ex [is({ 11 '})]
U %1:[ py exp|-Sas) ip;

Tunneling process in quantum dynamics

K(a, b) # 0 even if A, B(€ R) are dynamically separated.




Area-preserving map and mixed phase space

Semiclassical approximation (Van-Vleck, Gutzwiller)

K*(a,b) = )" A (a,b) exp{%S;y)(a, b)}
Y

y: classical orbits connecting a and b

If F*(A) N B = @, then y should be complex.




Complex paths contributing the semiclassical propagator

linear rotor




Complex paths contributing the semiclassical propagator

linear rotor




Complex paths contributing the semiclassical propagator




Comparison between quantum and semiclassical (numerics)

Area-preserving scattering map
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Comparison between quantum and semiclassical (numerics)
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Comparison between quantum and semiclassical (numerics)
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1-dimensional complex dynamics and the Julia set

1-dimensional polynomial map F : C i C

F:zP F(2)
where

F)=z+az" '+ +a;, (@d>2)

Classity the orbits according to the behavior of n = oo

I ={zeC]| limF'(z) = o0 } : The set of escaping points
K ={z € C| lim F"(z) is bounded } : Filled — in Julia set
F=C-K :  Fatou set

In particular

J = 0K :  Julia set



1-dimensional complex dynamics and the Julia set

e F(z) = Z2

I={|z|>1}, K={|zI<1}, J={lzl=1}

- z = 0and z = oo are both attracting fixed points of F.
The points z € I tend to co and also the pointsz € K -]

converge to z = 0 monotonically.

- The orbits z € | are chaotic.

Putting z = ™9, then the map on J can be reduced to
0 — 20 (mod 1).

c Fz)=z*+c




Dynamics on the Julia set

”P is chaotic on J”

1. Sensitive dependence on initial conditions

there exists 6 > 0 such that, for any z € | and any nbd U of z,
there exists ¢ € U and n > 0 such that |F"(z) — F(C)| > 0

2. Dense periodic repelling periodic orbits

J = K = { repelling periodic points }

3. Topological transitivity
For any open sets U, V C J, there exists k > 0 such that P“(U) NV £ @



Complex dynamics in 2-dimensional maps

2-dimensional maps F : C* b C?
r: Z; _ f(z4, 22)
Z; g(z4, 25)

Orbits are classified according to the behavior of n = oo

IF = {(Zl, Z5) € Cz | lim Fin(21’ Zp) = 00 }

n—»oo

K* ={(zq, 2, € C* | lim F**(zq, z,) is bounded in C? }

n—>00

In particular

K=K"'NnK filled Julia set

J* = dK* forward (resp. backward) Julia set
J=]"n]J : Julia set
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Complex dynamics in several dimensions — Recent progress —

Green function induced from the dynamics

1
G*(z1,22) = lim —log*| F*"(z1, 2)) |

n—-4oo dTl

gives the (1, 1)-currents through the Poisson equation

1
* = —dd°‘G*
H 27T

Theorem (Bedford-Smillie)

Let M be an algebraic variety, then there is a constant ¢ > 0 such that

lim l[1—"“_“”M] = cu*

n—>oo dn

in the sense of current, where [M] is the current of integration of M.

Bedford E and Smillie ] :

Invent. Math. 103 (1991) 69-99; J. Amer. Math. Soc. 4 (1991) 657-679; Math. Ann. 294 (1992) 395-420;
J.Geom.Anal. 8 (1998) 349-383; Annal. sci. de l’Ecole norm. super. 32 (1999) 455-497; American Journal of
Mathematics 124 (2002) 221-271; Ann.Math. 148 (1998) 695-735; Ann.Math. 160 (2004) 1-26

Bedford E, Lyubich E and Smillie ]
Invent. Math. 112 (1993) 77-125; Invent. Math. 114 (1993) 277-288



Complex dynamics in several dimensions — Recent progress —

Green function induced from the dynamics

1
G*(z1,22) = lim —log*| F*"(z1, 2)) |

n—-4oo dTl
gives the (1, 1)-currents through the Poisson equation

1
27t

ut = —dd°G*

Theorem (Bedford-Smillie)
Let M be an algebraic variety, then there is a constant ¢ > 0 such that
o1 o +
lim %[F”‘M] = cu”

in the sense of current, where [M] is the current of integration of M.

Theorem (Bedford-Smillie) Supp p* = J*

Theorem (Bedford-Smillie) F is ergodic on J* = supp (u* A u~)



Stable and unstable manifold theorem

F: ( Z : ) = ( p ;_y;a(,q) ) (V(g) : polynomial)

Theorem (Bedford-Smillie 1991) For any unstable periodic orbits p,

Ws(p) =J% and W= (p) =]

where W*(p) (resp. W*(p)) denotes stable (resp. unstable) manifold for p and
J* = dK* is called the forward (backward) Julia set.

Here, K* ={(p,q) € C*| ||[F"(p, 9)|| is bounded (n - *oo) }

Note:

1. This theorem holds even in the system with mixed phase space.

2. W*(p) and W"(p) are both locally 1-dimensional complex

( = 2-dimensional real) manifold in C>.



Stable and unstable manifolds in the real phase space

Completely integrable Nonintegrable

unstable manifold

/stable manifold



Tunneling orbits and Julia sets

Semiclassical sum

K*(a,b) = )" A (a,b) exp{%SLy)(a, b)}
Y

Theorem (AS, Y. Ishii and K.S. Ikeda) For polynomial maps F,
(i) If F is hyperbolic and hyp(Flg:) = log 2, then C = J*
(ii) If F is hyperbolic and h,,(F|g2) > 0, then C= J*

(i) If fop(Flge) > 0, then J* C C C K*

Here hip,(P|gr2) is topological entropy confined on R?* and semiclassically

contributing complex orbits are introduced as

C={(,p) € M, |ImS,(g,p) converges absolutely at (g, p) }

(Proof) apply the convergent theory of current (Bedford-Smillie)
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Comparison between quantum and semiclassical (numerics)
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Not all of complex paths contribute ...

Quantum propagator:

K(a, b) = (b|Ula) = f f Hd‘leexPES({‘lj}r{Pj})]
j j

Semiclassical approximation of propagator

K*(a,b) = Z ALV)(a, b) exp[%sg’)(a, b)]
Y




Evaluation of integrals with a large (small) parameter

Integral (single, multiple, infinite) with a large parameter 7:

I(n, X) = f---fg(zl,m,zN) exP[nS(zl,---,zN;z\’)]dzl---dzN
C

where X = (x,y, z,--+) is a set of parameters.

I(n, X) can be Feynman path integrals in quantum mechanics, partition functions

in field theory, diffraction integrals in optics - - -,

For simplicity,
I(n, X) = fexp[nS(z;X)]dz
c

To evaluate I(n, X), saddle-point (stationary phase) approximation is efficient

and often used.



Conventional saddle point method

- Saddle point method had been used only as a tool to evaluate integrals approximately.

- Remainders RZ(\’? had been regarded as uncontrollable errors without meaningful

information.

N-1 TETT e

In,X) = Zexp[nS(zi;X)](ZAf)n'r+R1(\i,)) B
] r=0

1

However,
Remember that expansions are divergent because there exist multiple saddles.

In other words, the convergence of the expansion around a saddle is prevented
by other saddles.

Expansions around different saddles might be related with each other.



Conventional saddle point method
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N-1 TETT
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Remember that expansions are divergent because there exist multiple saddles.

In other words, the convergence of the expansion around a saddle is prevented
by other saddles.

Expansions around different saddles might be related with each other.



Resurgent theory

Asymptotic expansion around saddle z;

N-1
I, X) = Z exp[nS(zi; X)]I"" where 79 = Z A%~ + RV
. r=0

1

Remainder term Rz(\ir) can be expanded around the other saddles z; (Berry-Howls 1991)

RO — L Z(L)N f‘” P, I‘f’(i)
N 2mi &~ nSi; 0 1-2z/(0S;) Sij

]

where S;; = S(zj; X) — S(z;; X)).

- Information for the asymptotic series around the saddles z;, z, - - - is contained
in the remainder term of the saddle z;.

- Each asymptotic series communicates with others through remainder terms.




Saddle point method and Stokes phenomenon

dS(z, X)

0z

Saddle points z; are points satisfying

zZ=2z;

Steepest descent curves C; associated with z; are contour curves of

Im S(z, X) = const passing through the saddle points z;

mnmlll\l\lﬂml )

Decompose the integral into a sum over saddles

I(n,X) = Zfexp[nS(z;X)]dz
i Vi



Stokes phenomenon in case with more than two saddles

3rd order differential equations

3
(17_3% + 311_1% + iz ) @ =0 (n: large parameter)

- Necessity to introduce new Stokes curves
(Berk, Nevins and Roberts, 1982)

- Virtual turning points and exact WKB foundation
for higher-order differential equations
(Aoki, Kawai and Takei, 1994)

Virtual turning points and new Stokes curves:

Any similar, or even related, precedents do not exist
in the traditional asymptotic analysis




Stokes phenomenon for multistep quantum propagator

n-step quantum propagator for the Hénon map

(S, (S0 i
u(qn) - f *ec f dlhdlh *ee dqn—l eXP[ES(qO: q1,°°° qn)]

where
n

n—1
1
S(Go, g1, , Gn) = Z E(qj - qj-1)* - Z V(g
=1

=1
and

1
V) = =2’ +¢q

Saddle point condition
a ) stable manifold
a_qiS(qO, ql, o qn) - O (1 S : S " 1) ‘| unstable manifoldi

leads to the area-preserving Hénon map
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Time evolution of Stokes geometry
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Stokes geometry in a generic situation
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Summary

- Signature of quantum tunneling drastically changes due to the presence of chaos.

- In nonintegrable systems, classically disconnected regions are connected

via the orbits in the Julia set.

- Strong enhancement of tunneling probability occurs because of an abundance

of complex orbits.

- Stokes phenomenon in nonintegrable systems is a challenging issue,

and resurgent theory play a crucial role there.



