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How are disconnected regions connected ?
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Area-preserving scattering map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)
V(q) = K exp

(
−γq2

)

Forbidden process in classical dynamics

A ∩ F−n(B) = ∅ for ∀n, ifA,B(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map

Û = e−
i
!T(p̂)e−

i
!V(q̂)

Propagator

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifA,B(∈ R) are dynamically separated.

A B

T. Onishi, AS, K. Takahashi and K.S. Ikeada (2003)

Y. Hanada et al (2021)
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2-D autonomous Hamiltonian H(q1, q2, p1, p2)

Constant of motion:H(q1, q2, p1, p2) = E

Poincaré map F :Σ !→ Σ is area-preserving (symplectic)

Action of the closed loops C

S[C] =
∮

C
p · dq − Hdt

Difference of action of arbitrary closed loops C and C′

S[C] − S[C′] =
∫

T
∇ × A · d2s (A = (p, 0,−H))

Since ∇ × A = −(q̇, ṗ,−1), and the Hamiltonian vector field is parallel to the tube T ,

S[C] = S[C′]

On the constant energy surface

S[C] =
∮

C
p · dq

Completely integrable Nonintegrable

Complexified invariant manifold and natural boundaries

Area enclosed by a closed loop C on the constant energy surface

S[C] =
∮

C
p · dq

is preserved along the Hamiltonian flow:

S[C] = S[C′]

Poincaré map F :Σ !→ Σ is area-preserving (symplectic)

instanton

Y. Hanada (2014)

(Greene, Percival, Berretti, Marmi, · · · )

Σ

1D systems

H =
p2

2
+ V(q)

Classically, always completely integrable.

2D systems

H =
p2

1

2
+

p2
2

2
+ V(q1, q2)

Classically, nonintegrable in general.

Confinement occurs not only due to energy barriers, but also dynamical barriers
restrict the classical motion

Poincaré section and area-preserving maps
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Poincaré section and area-preserving maps

Action of the closed loops C

S[C] =
∮

C
p · dq − Hdt

Difference of action of arbitrary closed loops C and C′

S[C] − S[C′] =
∫

T
∇ × A · d2s

where A = (p, 0,−H).

Since ∇×A = (−∂H/∂p, ∂H/∂q,−1) = −(q̇, ṗ,−1), and the Hamiltonian vector field
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Area-preserving map and mixed phase space

Area-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

A ∩ F−n(B) = ∅ for ∀n, ifA,B(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map

Û = e−
i
!T(p̂)e−

i
!V(q̂)

Propagator

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifA,B(∈ R) are dynamically separated.
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Kicked rotor

H(q, p, t) =
1
2

p2 + V(q)
∞∑

n=−∞
δ(t − n)

V(q) = K sin q

Kicked rotor

H(q, p, t) =
1
2

p2 + V(q)
∞∑

n=−∞
δ(t − n)
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∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map
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∫
· · ·
∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifAa,Bb(∈ R) are dynamically separated.
q p

Classical dynamics in mixed phase space

Aarea-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
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Area-preserving map and mixed phase space
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∑
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∫
· · ·
∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifAa,Bb(∈ R) are dynamically separated.
q p

Classical dynamics in mixed phase space

Aarea-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
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Comparison between quantum and semiclassical (numerics)

Note:q1 is in general a multivalued function of a given (α, β).
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K(a, b) ! 0 even ifA,B(∈ R) are dynamically separated.

T. Onishi, AS, K. Takahashi and K.S. Ikeada (2003)
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1-dimensional polynomial map F : C !→ C

F : z !→ F(z)

where

F(z) = zd + a1zd−1 + · · · + ad (d ≥ 2)

Classify the orbits according to the behavior of n → ∞

I = { z ∈ C | lim
n→∞

Fn(z) = ∞ } : The set of escaping points

K = { z ∈ C | lim
n→∞

Fn(z) is bounded } : Filled − in Julia set

F = C − K : Fatou set

In particular

J = ∂K : Julia set

1-dimensional complex dynamics and the Julia set

Julia set in 1-dimensional polynomial maps

∆E 1/!



Julia set in 1-D dynamics

・ F(z) = z2

I = { |z| > 1 }, K = { |z| ≤ 1 }, J = { |z| = 1 }

- z = 0 and z = ∞ are both attracting fixed points of F.
The points z ∈ I tend to∞ and also the points z ∈ K − J converge to
z = 0 monotonically.

- The orbits z ∈ J are chaotic.
Putting z = e2πiθ, then the map on J can be reduced to θ %→ 2θ (mod 1).
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Julia set in 1-D dynamics

・ F(z) = z2

I = { |z| > 1 }, K = { |z| ≤ 1 }, J = { |z| = 1 }

- z = 0 and z = ∞ are both attracting fixed points of F.
The points z ∈ I tend to∞ and also the points z ∈ K − J
converge to z = 0 monotonically.

- The orbits z ∈ J are chaotic.
Putting z = e2πiθ, then the map on J can be reduced to
θ %→ 2θ (mod 1).

・ F(z) = z2 + c

The behavior around z = 0

Theorem (Koenigs) F(z) is holomorphic near z = 0 and has the
Taylor expansion

F(z) = λz + c2z2 + · · · (0 < |λ| < 1)

Then there exists a conformal map φ : U → C which satisfies the
functional equation (Schröder equation)

φ
(
F(z)
)
= λφ(z) (z ∈ U)

where U is a neighborhood of z = 0.

Note : If |λ| > 1, then one can show the same assertion by considering
the inverse function.

z = 0 z = ∞

The behavior around z = 0
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1-dimensional complex dynamics and the Julia set

Julia set in 1-dimensional polynomial maps
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Dynamics on the Julia set

γ: classical orbits connecting a and b

S. Ushiki
”P is chaotic on J”

1. Sensitive dependence on initial conditions

there exists δ > 0 such that, for any z ∈ J and any nbd U of z,
there exists ζ ∈ U and n ≥ 0 such that |Fn(z) − F(ζ)| > δ

2. Dense periodic repelling periodic orbits

J = ∂K = { repelling periodic points }

3. Topological transitivity

For any open sets U,V ⊂ J, there exists k > 0 such that Pk(U) ∩ V ! ∅

”P is chaotic on J”
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there exists δ > 0 such that, for any z ∈ J and any nbd U of z,
there exists ζ ∈ U and n ≥ 0 such that |Fn(z) − F(ζ)| > δ
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Complex dynamics in 2-dimensional maps

Quantum tunneling in multidimension ?

How are disconnected regions connected ?

2-dimensional maps F : C2 !→ C2

F :
(

z′
1

z′
2

)
=

(
f (z1, z2)
g(z1, z2)

)

Orbits are classified according to the behavior of n → ±∞

I± = { (z1, z2) ∈ C2 | lim
n→∞

F±n(z1, z2) = ∞ }
K± = { (z1, z2) ∈ C2 | lim

n→∞
F±n(z1, z2) is bounded in C2 }

In particular

K = K+ ∩ K− : filled Julia set

J± = ∂K± : forward (resp. backward) Julia set

J = J+ ∩ J− : Julia set

Complex dynamics in 2-dimensional maps

Quantum tunneling in multidimension ?

How are disconnected regions connected ?

Complex dynamics in 2-dimensional maps

Quantum tunneling in multidimension ?

How are disconnected regions connected ?

2-dimensional maps F : C2 !→ C2

F :
(

z′
1

z′
2

)
=

(
f (z1, z2)
g(z1, z2)

)

Here the orbits are classified according to the behavior of n → ∞

I± = { (z1, z2) ∈ C2 | lim
n→∞

P±n(z1, z2) = ∞ }
K± = { (z1, z2) ∈ C2 | lim

n→∞
P±n(z1, z2) is bounded in C2 }

In particular

J = ∂K+ ∩ ∂K− : Julia set

K = K+ ∩ K− : filled Julia set

J± = ∂K± : forward (resp. backward) Julia set

J = J+ ∩ J− : Julia set



Simplest example F(z) = z2

It is easy to show that

I = { |z| > 1 }, K = { |z| ≤ 1 }, J = { |z| = 1 }

- z = ∞ is an attracting fixed point of F.
The points z ∈ I tend to∞montonically.

- z = 0 is also is an attracting fixed point of F.
The points z ∈ K − J converge to z = 0 monotonically.

- The orbits z ∈ J are chaotic.
Putting z = e2πiθ, then the map on JP can be reduced to θ %→ 2θ (mod 1).

S. Ushiki
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Complex dynamics in several dimensions — Recent progress —
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Green function induced from the dynamics

G±(z1, z2) ≡ lim
n→+∞

1
dn

log+
∣∣∣ F±n(z1, z2)

∣∣∣

gives the (1, 1)-currents through the Poisson equation

µ± ≡ 1
2π

ddcG±

Theorem (Bedford-Smillie)
Let M be an algebraic variety, then there is a constant c > 0 such that

lim
n→∞

1
dn

[F∓nM] = cµ±

in the sense of current, where [M] is the current of integration of M.

G±(x, y) is continuous and plurisubharmonic onC2. Thus, by identifying (x, y) = (z1, z2),
we can apply the ddc-operator ( = complex Laplacian ) :

ddcu ≡ 2i
2∑

j,k=1

∂2u

∂zj∂zk

dzj ∧ dzk

to G±(x, y) in the sense of distribution so as to get the (1, 1)-currents :

µ± ≡ 1
2π

ddcG±

∼ Poisson equation (µ±: charge distribution)

Theorem (Bedford-Smillie) Let M be an algebraic variety, then there is a constant
c > 0 such that

lim
n→∞

1
2n

[F∓nM] = cµ±

in the sense of current, where [M] is the current of integration of M.

Note 1:
For u ∈ D1,1(Ω), the current of integration of M is defined by

∫
[M] ∧ u =

∫

M
u

Note 2 :
An algebraic variety is given as the zero set of polynomials

Ex) Line (z1 + z2 − 1 = 0), Sphere (z2
1
+ z2

2
− 1 = 0), and so on.
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For u ∈ D1,1(Ω), the current of integration of M is defined by
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∫

M
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Note 2 :
An algebraic variety is given as the zero set of polynomials

Ex) Line (z1 + z2 − 1 = 0), Sphere (z2
1
+ z2

2
− 1 = 0), and so on.

Theorem (Bedford-Smillie) Supp µ± = J±

Theorem (Bedford-Smillie) F is ergodic on J∗ = supp (µ+ ∧ µ−)



Stable and unstable manifold theorem

F :
(

p′
q′

)
=

(
p + V′(q)

q + p′

)
( V(q) : polynomial )

Theorem (Bedford-Smillie 1991) For any unstable periodic orbits p,

Ws(p) = J+ and Wu(p) = J−

where Ws(p) (resp.Wu(p)) denotes stable (resp. unstable) manifold for p and

J± = ∂K± is called the forward (backward) Julia set.

Here, K± = { (p, q) ∈ C2 | ∥Fn(p, q)∥ is bounded (n → ±∞) }

Note : Ws(p) and Wu(p) are both locally 1-dimensional complex (2-dimensional

real) manifold in C2.
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J± = ∂K± is called the forward (backward) Julia set.

Here, K± = { (p, q) ∈ C2 | ∥Fn(p, q)∥ is bounded (n → ±∞) }

Note :

1. This theorem holds even in the system with mixed phase space.

2. Ws(p) and Wu(p) are both locally 1-dimensional complex
( = 2-dimensional real) manifold in C2.
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Amphibious Complex orbits and Dynamical Tunneling

Stable and unstable manifolds in the real phase space

Akira Shudo (TMU)
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A. Tanaka (TMU)
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Y. Hanada (2014)
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Tunneling orbits and Julia sets

Semiclassical sum

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

Theorem (AS, Y. Ishii and K.S. Ikeda) For polynomial maps F,

(i) If F is hyperbolic and htop(F|R2) = log 2, then C = J+

(ii) If F is hyperbolic and htop(F|R2) > 0, then C = J+

(iii) If htop(F|R2) > 0, then J+ ⊂ C ⊂ K+

Here htop(P|R2) is topological entropy confined on R2, and semiclassically con-
tributing complex orbits are introduced as

C ≡ {
(q, p) ∈M∞ | Im Sn(q, p) converges absolutely at (q, p)

}

( Proof ) apply the convergent theory of current (Bedford-Smillie)
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Comparison between quantum and semiclassical (numerics)

Note:q1 is in general a multivalued function of a given (α, β).



Classical dynamics in mixed phase space

Area-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Aa Bb

Classical dynamics in mixed phase space

Aarea-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·
∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map

Û = e−
i
!T(p̂)e−

i
!V(q̂)

Propagator

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·
∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifAa,Bb(∈ R) are dynamically separated.
q p

Classical dynamics in mixed phase space

Aarea-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
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Tunneling process in quantum dynamics

K(a, b) ! 0 even ifAa,Bb(∈ R) are dynamically separated.
q p

Aa Bb

Quantum propagator:

K(a, b) = ⟨b|Û|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

exp
[

i
!

S({qj}, {pj})
]

Semiclassical approximation of propagator

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

[
i
!

S(γ)
n (a, b)

]

Not all of complex paths contribute ...

Dynamical tunneling

Poincaré section

Classical dynamics in nonintegrable systems

Tunneling splitting in 1D and 2D

One-dimension

Multi-dimension

Poincaré section



Saddle pont method

Evaluation of integrals with a large (small) parameter

Saddle points zi are points satisfying
∂S(z,X)

∂z

∣∣∣∣∣
z=zi

Steepest descent curves are contour curves of Im S(z,X)= const passing through
the saddle points zi

Saddle points zi are points satisfying
∂S(z,X)

∂z

∣∣∣∣∣
z=zi

Steepest descent curves Ci associated with zi are contour curves of
Im S(z,X) = const passing through the saddle points zi

z1 z2

C1 C2

Decompose the integral into a sum over saddles

I(η,X) =
∑

i

∫

Ci

exp
[
ηS(z;X)

]
dz

≃
∑

i

Ai exp
[
ηS(zi;X)

]

Integral (single, multiple, infinite) with a large parameter η:

I(η,X) =
∫
· · ·

∫

C
g(z1, · · · , zN) exp

[
ηS(z1, · · · , zN;X)

]
dz1 · · · dzN

where X = (x, y, z, · · · ) is a set of parameters.

I(η,X) can be Feynman path integrals in quantum mechanics, partition functions
in field theory, diffraction integrals in optics · · · ,

For simplicity,

I(η,X) =
∫

C
exp

[
ηS(z;X)

]
dz

To evaluate I(η,X), saddle-point (stationary phase) approximation is efficient and
often used.
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Asymptotic expansion around saddle zi

I(η,X) =
∑

i

exp
[
ηS(zi;X)

](N−1∑

r=0

A(i)
r η
−r + R(i)

N

)

where R(i)
N

denotes remainders associated with saddle zi

- Saddle point method had been used only as a tool to evaluate integrals approximately.

- Remainders R(i)
N

had been regarded as uncontrollable errors without meaningful
information.Asymptotic expansion around saddle zi
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However,

Remember that expansions are divergent because there exist multiple saddles.

In other words, the convergence of the expansion around a saddle is prevented
by other saddles.
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Asymptotic expansion around saddle zi

I(η,X) =
∑

i

exp
[
ηS(zi;X)

]
I (i) where I (i) =

N−1∑

r=0

A(i)
r η
−r + R(i)

N

Remainder term R(i)
N

can be expanded around the other saddles zj (Berry-Howls 1991)

R(i)
N
=

1
2πi

∑

j

( 1
ηSij

)N ∫ ∞

0
dz

e−zzN−1

1 − z/(ηSij)
F (m)

( z
Sij

)

where Sij ≡ S(zj;X) − S(zi;X)).

- Information for the asymptotic series around the saddles zj, zk, · · · is contained
in the remainder term of the saddle zi.

- Each asymptotic series communicates with others through remainder terms.
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Theory of resurgence

Resurgent theory
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Saddle pont method

Saddle points zi are points satisfying
∂S(z,X)

∂z

∣∣∣∣∣
z=zi

Steepest descent curves are contour curves of Im S(z,X)= const passing through
the saddle points zi

Saddle points zi are points satisfying
∂S(z,X)
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∣∣∣∣∣
z=zi

Steepest descent curves Ci associated with zi are contour curves of
Im S(z,X) = const passing through the saddle points zi

z1 z2

Decompose the integral into a sum over saddles

I(η,X) =
∑

i

∫

Ci

exp
[
ηS(z;X)

]
dz
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z=zi

Steepest descent curves Ci associated with zi are contour curves of
Im S(z,X) = const passing through the saddle points zi

z1 z2

C1 C2

Decompose the integral into a sum over saddles

I(η,X) =
∑

i

∫

Ci

exp
[
ηS(z;X)

]
dz

Asymptotic expansion around each saddle

Saddle pont method

Evaluation of integrals with a large (small) parameter

Saddle points zi are points satisfying
∂S(z,X)

∂z

∣∣∣∣∣
z=zi

Steepest descent curves are contour curves of Im S(z,X)= const passing through
the saddle points zi

Saddle points zi are points satisfying
∂S(z,X)

∂z

∣∣∣∣∣
z=zi

Steepest descent curves Ci associated with zi are contour curves of
Im S(z,X) = const passing through the saddle points zi

z1 z2

C1 C2

Decompose the integral into a sum over saddles

I(η,X) =
∑

i

∫

Ci

exp
[
ηS(z;X)

]
dz

≃
∑

i

A(i)
0

exp
[
ηS(zi;X)

]

(leading order approximation)

Quantum propagator and saddle point condition

Time evolution of Stokes geometry

Quantum tunneling

in one dimension

and complex path

in multidimensions

Complex paths contributing the semiclassical propagator

Saddle point method and Stokes phenomenon



Stokes geometry for higher order differential equation

3rd order differential equations
(
η−3 d3

dz3
+ 3η−1 d

dz
+ iz

)
ϕ = 0

- Necessity to introduce new Stokes curves
(Berk, Nevins and Roberts, 1982)

- Virtual turning points and exact WKB foundation
for higher-order differential equations
(Aoki, Kawai and Takei, 1994)

Crossing of Stokes curves, what to do ?

Stokes curves:
Re S(1)(q0, q1, q2) = Re S(2)(q0, q1, q2)

Stokes curves:
Re S(i)(q0, q1, q2, q3) = Re S( j)(q0, q1, q2, q3)
(1 ≤ i, j ≤ 4)

q2 q3

(η: large parameter)
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Quantum propagator and saddle point condition

Time evolution of Stokes geometry

Quantum tunneling

in one dimension

and complex path

in multidimensions

Complex paths contributing the semiclassical propagator

Saddle point method and Stokes phenomenon

Stokes phenomenon in case with more than two saddles

Kicked rotor

H(q, p, t) =
1
2

p2 + V(q)
∞∑

n=−∞
δ(t − n)

Virtual turning points and new Stokes curves:

V(q) = K sin q

Virtual turning points and new Stokes curves:

Any similar, or even related, precedents do not exist
in the traditional asymptotic analysis



Quantum propagator and saddle point condition

Time evolution of Stokes geometry

Quantum tunneling

in one dimension

and complex path

in multidimensions

Complex paths contributing the semiclassical propagator

Saddle point method and Stokes phenomenon

Stokes phenomenon in case with more than two saddles

Stokes phenomenon for multistep quantum propagator

n-step quantum propagator for the Hénon map

u(qn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
dq1dq2 · · · dqn−1 exp

[ i
!

S(q0, q1, · · · , qn)
]

where

S(q0, q1, · · · , qn) =
n∑

j=1

1
2

(qj − qj−1)2 −
n−1∑

j=1

V(qj)

and
V(q) = −1

3
q3 + cq

Saddle point condition

∂

∂qi
S(q0, q1, · · · , qn) = 0 (1 ≤ i ≤ n − 1)

leads to the area-preserving Hénon map

F :
(

pi+1
qi+1

)
=

(
pi − V′(qi)
qi + pi+1

)
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Models for nonadiabatic transition

Exact WKB analysis of non-adiabatic transition probabilities for three levels

Numerical verification of exact WKB formulas

Beyond the treatment of the exact WKB

Role of new Stokes curves

Linear diabatic levels

Case 1 )

(Linear case)

(Nonlinear case)

New Stokes curves cross the real axis,

Ordinary Stokes curves (active)
Ordinary Stokes curves (inert)
New Stokes curves (active)
New Stokes curves (inert)
Ordinary turning point
Virtual turning point
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Quantum dynamical tunneling

Questions

Hénon map and 1-step propagator

Airy integral and Stokes phenomenon

Turning point and Stokes curves

Stokes phenomenon for integrals with more than 2 saddles

Definition for virtual turning points and Stokes curves

— differential equations case —

Stokes phenomenon and the growth rate of complex solutions

Main result

— differential equations case —

— multiple integrals case —

n = 2 n = 3 n = 4
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Definition for virtual turning points and Stokes curves

— differential equations case —

Stokes phenomenon and the growth rate of complex solutions

Main result

— differential equations case —

— multiple integrals case —

n = 2 n = 3 n = 4

Quantum propagator and saddle point condition

Time evolution of Stokes geometry
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How many solutions remain in the classically forbidden region ?

Stokes geometry in a generic situation

- Higher-order Stokes phenomena based on
hyperasymptotic expansions
(Howls, Langman, Olde Daalhuis, 2004)

Models for nonadiabatic transition

Exact WKB analysis of non-adiabatic transition probabilities for three levels

Numerical verification of exact WKB formulas

Beyond the treatment of the exact WKB

Role of new Stokes curves

Linear diabatic levels

Case 1 )

(Linear case)

(Nonlinear case)

New Stokes curves cross the real axis,

Ordinary Stokes curves (active)
Ordinary Stokes curves (inert)
New Stokes curves (active)
New Stokes curves (inert)
Ordinary turning point
Virtual turning point



Summary

- Signature of quantum tunneling drastically changes due to the presence of chaos.

- In nonintegrable systems, classically disconnected regions are connected
via the orbits in the Julia set.

- Strong enhancement of tunneling probability occurs because of an abundance
of complex orbits.

- Stokes phenomenon in nonintegrable systems is a challenging issue,
and resurgent theory play a crucial role there.

- Signature of quantum tunneling drastically changes due to the presence of chaos.

- In nonintegrable systems, classically disconnected regions are connected
via the orbits in the Julia set.

- Strong enhancement of tunneling probability occurs because of an abundance
of complex orbits.

- Stokes phenomenon in nonintegrable systems is a challenging issue,
and resurgent theory play a crucial role there.


