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Bob has an access to both early and late radiations !

C : Remaining BH

D - Late radiation - Bob needs to collect just a few qubits from D.

R : Early radiation “Black hole as mirrors” (Hayden-Preskill 2007)
® )
A

TAout
C V
2D 1r
<
U theorist’s toy model

A B .
n copies n : Bekenstein-Hawking entropy
EPR

¥)

(maximally entangled)



-

RBTCEDDOM7?



AL ICBER=FBBRERTEZTL2ON?

e Hayden-PreskillD{x & : Haar random unitary

€

1Ht

~ Haar random unitary

—

Does it really work for actual

black holes?



AL ICBER=FBBRERTEZTL2ON?

e Hayden-PreskillD{x & : Haar random unitary

: , Does it really work for actual
e’ ~ Haar random unitary — d
black holes?
e —(RESPHT. EFIRREZHIEBEITS?
How ?

recovery



2027 & AH?




T VTILAY NOKRE (BE) ?

e 2SIV TIEIVIVT)ILAY NDRE?

(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, ...)

e tH? ' ‘ . ‘ ‘ (‘ ‘ ‘3\ becomes featureless

0) 10y 10) 0y 10) [0) [0) |0)




T VTIAYRNDORKRE (BE) ?

e 2SIV TIEIVIVT)ILAY NDRE?

(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, ...)

e tH? ' ‘ ‘ ‘ ‘ (‘ ‘ ‘3\ becomes featureless

0) 10y 10) 0y 10) [0) [0) |0)

ZNIZEVE "thermalization” T > T. R 27U VT T,



T VTIAYRNDORKRE (BE) ?

e XSV TYUITIEI VI VTIAY NDORE?

(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, ...)

e tH? ‘ ‘ ‘ ‘ ‘(‘ ‘ ‘3\ becomes featureless

0) 10) 10) |0y o) [0) [0) [0)

ZNIZEVE "thermalization” T > T. R 27U VT T,

o RSV IGTETIVIVTILAY NEESHD |

Entanglement (tsunami) velocity is smaller than scrambling (butterfly)
velocity (Hosur-Qi-Roberts-BY15)

No-go argument from causal structure of black hole spacetime (Shor18)



BT ORE

N7y
\mj

HETORRE
BETFO U4 X)) [ F BEEEHICKEL DD,

" QOO0 OO0 00 v



BT ORE

N7y
\mj

HETORRE
BETFO U4 X)) [ F BEEEHICKEL DD,

" QOO0 OO0 00 v



BT ORE

N7y
\mj

HETORRE
BETFO U4 X)) [ F BEEEHICKEL DD,

" OO0O0O0 OO OO Wi



HETORE

HETOHRRE

N

~
°,

BETFO U4 X)) [ F BEEEHICKEL DD,

N Y Y XX XXX RE

(A

E ;%—k_jr & JK%@E%‘% (Hosur-Qi-Roberts-BY15)

n-qubit Hilbert space 2n-qubit Hilbert space

O < > ’@>

Choi-Jamilkowski isomorphism



HETORE

HETORRE
BETFO U4 X)) [ F BEEEHICKEL DD,

" O 0O00 OO OO® Wi

N

o BEFERREBODER (Hosur-Qi-Roberts-BY 15)

(A

n-qubit Hilbert space 2n-qubit Hilbert space
O < - O)
BEEFOHRE BETOIVYVITILAY NDHE

Choi-Jamilkowski isomorphism



Out-of-time order 1B EEEE%K

e Out-of-time order HHEERI%N (Kitaev)

Vo) @@ 00 00008 wvowuvowe)
") 0000 000 @ — smal




Out-of-time order 1B EEEE%K

e Out-of-time order HHEERI%N (Kitaev)

Vo) @@ 00 00008 wvowuvowe)
") 0000 000 @ — smal

e HEIRAYU TV T YT DERE (BY-Kitaev)

(W()Z(0)Y () X(0)) = (WY )(Z)(X) + (ZX)(W)(Y) = (W)(Z)(Y)(X)



Out-of-time order 1B EEEE%K

e Out-of-time order HHEERI%N (Kitaev)

Vo) @@ 00 00008 wvowuvowe)
") 0000 000 @ — smal

e HEIRAYU TV T YT DERE (BY-Kitaev)

(W()Z(0)Y () X(0)) = (WY )(Z)(X) + (ZX)(W)(Y) = (W)(Z)(Y)(X)

e ISV IR—ILERTSVTYVY

B NEERK
't Hooft (1980s) and Kiem-Verlinde-Verlinde (1990s)
Shenker-Stanford and Kitaev (2014) for AdS black hole




Out-of-time order 1B EEEE%K

e Out-of-time order HHEERI%N (Kitaev)

Vo) @@ 00 00008 wvowuvowe)
") 0000 000 @

—» small

e HEIRAYU TV T YT DERE (BY-Kitaev)

(W()Z(0)Y () X(0)) = (WY )(Z)(X) + (ZX)(W)(Y) = (W)(Z)(Y)(X)

e ISV IR—ILERTSVTYVY

B NEERK
't Hooft (1980s) and Kiem-Verlinde-Verlinde (1990s)
Shenker-Stanford and Kitaev (2014) for AdS black hole

This goes beyond Hawking's semi-classical calculation



Decoupling &3




time

remaining
black hole

T

Decoupling

Bob has access to

radiation

(

late early
radiation

4 R
D

U

TA

|

68
@
EPR

E 3

N



time

>

Entangled ?

Decoupling

/‘\ng has access to

referenc
system

e | remaining
black hole

A

A,

@
tc

(

late early
radiation radiation

J

4 R
D

U

TA 68
@
EPR EPR

E 3

N



Decoupling xE 1=

Theorem 1. Suppose that the black hole’s dynamics is scrambling and dp Z, da. Then, the subsystems A’ and
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Theorem 1. Suppose that the black hole’s dynamics is scrambling and dp Z, da. Then, the subsystems A’ and
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Verified quantum information scrambling
K. A. Landsman'*, C. Figgatt"®, T. Schuster?, N. M. Linke!, B. Yoshida?, N. Y. Yao>* & C. Monroe ) p-
Quantum scrambling is the dispersal of local information into  For example, non-unitary time-evolution arising from depolarization o), U
many-body quantum entanglements and correlations distributed or classical noise processes naturally lead the OTOC to decay, even in
throughout an entire system. This concept accompanies the the absence of quantum scrambling. A similar decay can also originate
dynamics of thermalization in closed quantum systems, and has  from even slight mismatches between the purported forward and back- [0), “
recently emerged as a powerful tool for characterizing chaos in  wards time-evolution of W(t) (refs !¢ and 2*). Although full quantum )
black holes'*. However, the direct experimental measurement tomography can in principle distinguish scrambling from decoherence
of quantum scrambling is difficult, owing to the exponential and experimental noise, this requires a number of measurements that [0),
complexity of ergodic many-body entangled states. One way to  scales exponentially with system size and is thus impractical.
characterize quantum scrambling is to measure an out-of-time- In this work, we overcome this challenge and implement a quantum
ordered correlation function (OTOC); however, because scrambling  teleporation protocol that robustly distinguishes information scram- 0)5 ur
leads to their decay, OTOCs do not generally discriminate between  bling from both decoherence and experimental noise>®. Using this pro-
quantum scrambling and ordinary decoherence. Here we implement  tocol, we demonstrate verifiable information scrambling in a family
a quantum circuit that provides a positive test for the scrambling  of unitary circuits and provide a quantitative bound on the amount of [0
features of a given unitary process>S. This approach conditionally ~scrambling observed in the experiments.
teleports a quantum state through the circuit, providing an The intuition behind our approach lies in a re-interpretation of the
unambiguous test for whether scrambling has occurred, while black-hole information paradox®!’, under the assumption that the 0);

simultaneously measuring an OTOC. We engineer quantum
scrambling processes through a tunable three-qubit unitary
operation as part of a seven-qubit circuit on an ion trap quantum
computer. Measured teleportation fidelities are typically about 80
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

dynamics of the black hole can be modelled as a random unitary oper-
ation U (Fig. 1). Schematically, an observer (Alice) throws a secret
quantum state into a black hole, while an outside observer (Bob)
attempts to reconstruct this state by collecting the Hawking radiation
emitted at a later time®'°.

An explicit decoding protocol has been recently proposed™®, which
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Quantum scrambling is the dispersal of local information into
many-body quantum entanglements and correlations distributed
throughout an entire system. This concept accompanies the
dynamics of thermalization in closed quantum systems, and has
recently emerged as a powerful tool for characterizing chaos in
black holes! 4. However, the direct experimental measurement
of quantum scrambling is difficult, owing to the exponential
complexity of ergodic many-body entangled states. One way to
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling
leads to their decay, OTOCs do not generally discriminate between
quantum scrambling and ordinary decoherence. Here we implement
a quantum circuit that provides a positive test for the scrambling
features of a given unitary process>S. This approach conditionally
teleports a quantum state through the circuit, providing an
unambiguous test for whether scrambling has occurred, while
simultaneously measuring an OTOC. We engineer quantum
scrambling processes through a tunable three-qubit unitary
operation as part of a seven-qubit circuit on an ion trap quantum
computer. Measured teleportation fidelities are typically about 80
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.
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For example, non-unitary time-evolution arising from depolarization
or classical noise processes naturally lead the OTOC to decay, even in
the absence of quantum scrambling. A similar decay can also originate
from even slight mismatches between the purported forward and back-
wards time-evolution of W (t) (refs !¢ and 24). Although full quantum
tomography can in principle distinguish scrambling from decoherence
and experimental noise, this requires a number of measurements that
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise>®. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family
of unitary circuits and provide a quantitative bound on the amount of
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the
black-hole information paradox®!°, under the assumption that the
dynamics of the black hole can be modelled as a random unitary oper-
ation U (Fig. 1). Schematically, an observer (Alice) throws a secret
quantum state into a black hole, while an outside observer (Bob)
attempts to reconstruct this state by collecting the Hawking radiation
emitted at a later time®'°.

An explicit decoding protocol has been recently proposed™®, which
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