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なぜ量子情報理論？
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• 情報損失問題 = “物理系における情報理論的な問題”

量子情報理論家にとっての「ブラックホール」



結論！

•　量子多体カオス（量子情報スクランブリング）という現象によって、「なぜ
情報がブラックホールから出てくるのか」が証明できる。
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Figure 1. Information on a black hole horizon.

4. The quantum information problem.

It is tempting to conclude from the arguments presented above that the ‘black hole
states’ form a natural extension of the spectrum of elementary particles. The lightest
particles are known and have been identified as photons, neutrinos, electrons, muons,
mesons, baryons, and onwards to the heavy leptons, the Higgs and so forth. The series
could continue with as yet unknown particles in the ‘desert’ between 1 TeV and 1019 GeV,
and beyond that region the first superstring recurrences could exist. The ‘most pointlike
objects’ beyond the Planck mass must undoubtedly be black holes, simply because any
sufficiently compact object with sufficiently high mass must carry a gravitational field
and a horizon associated with that. Apparently, we now know the spectrum of the
objects in this range, apart from the unknown multiplicative constant eC in Eq. (3.8).

It should be possible to handle these objects just as all quantum objects when
we consider quantum mechanical amplitudes at high energies: they are represented as
propagators describing intermediate states. Theoretical Physics should give us the com-
putational rules, comparable to Feynman rules, for computing these amplitudes. What
have we got?

The behaviour of quantum fields near the horizon of a black hole follows from
the expression for ds , the infinitesimal invariant distance element according to General
Relativity:

ds2 = −
(

1 −
2M

r

)

dt2 +
dr2

1 − 2M/r
+ r2dΩ2 , (4.1)

where dΩ2 stands for dθ2 + sin2 θdφ2 . Writing

r − 2M = eσ , dr = (r − 2M)dσ , (4.2)

we see that
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• Bekenstein-Hawking エントロピー

ブラックホールのエントロピーは有限である。
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ブラックホールがユニタリーであっても、特に「矛盾」はない。

• Bekenstein-Hawking エントロピー

ブラックホールのエントロピーは有限である。

• Locality （局所性）

Non-local（非局所）な相互作用は存在しない。
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思考実験とToy Model



• Aliceが量子状態をブラックホール（n qubits）に投げ入れる。Bobは、その量子
状態をホーキング輻射から再構築しようとする。
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• パラドックス

外の観測者：量子状態を再構築できる。

中の観測者：元々の量子状態が存在している。

No cloning theorem （クローン禁止定理）に反する？



Hayden-Preskill思考実験



Hayden-Preskill思考実験

EPR

Figure 3: The Hayden-Preskill thought experiment. U represents the time-evolution of the black hole
and V represents a recovery unitary.

3 Review of Hayden-Preskill recovery

In this section, we provide a brief review of the Hayden-Preskill thought experiment [28]. We try to be

clear about what the recoverability of quantum states means in information-theoretic terms. We will

mostly focus on a situation which mimics the AdS eternal black hole while the scope of the original

argument by Hayden and Preskill is broader. Part of our goal is to remind readers of how the quantum

cloning puzzle can be resolved by using the idea of backreaction within the context of the AdS/CFT

correspondence.

3.1 Setup

As in the firewall argument, Hayden and Preskill considered an old black hole which has emitted more

than half of its initial entropy. In the Hayden-Preskill thought experiment, Alice throws a quantum

state | i into a black hole and Bob, the outside observer, attempts to reconstruct it by collecting the

Hawking radiation. To simplify the argument further, we treat the initial state as nB = log |B| copies

of EPR pairs between the black hole B and the radiation R :

|�EPR
iBR =

1p
|B|

X

j

|jiB ⌦ |jiR. (6)

Let us append a subsystem A to the black hole to account for the Hilbert space of the infalling

quantum state | i. Following Hayden and Preskill, let us assume that the black hole evolves by a Haar

random unitary U that acts on AB. Let C and D be the remaining black hole and the outgoing mode

respectively (Fig. 3). Bob’s goal is to reconstruct | i by catching D and having access to the early

radiation R. The surprising result is that |D| ' |A| is su�cient to achieve this goal. Namely, if | i is an

nA-qubit quantum state, catching nD = nA + ✏ qubits of the outgoing mode with ✏ = O(1) su�ces. By

“reconstruction”, we mean the existence of some recovery unitary VDR that, for any given input state

| i, reconstructs the original state | i (Fig. 3):

(IC ⌦ VDR)(UAB ⌦ IR)
�
| iA ⌦ |�EPR

iBR
�
⇡ | iAout

⌦ |somethingi for all | i 2 HA. (7)

Here Aout is some subsystem in DR with |Aout| = |A|, and “⇡” is measured in terms of the fidelity of

8

C : Remaining BH 

D : Late radiation 

R : Early radiation

• Aliceは量子状態を「古いブラックホール」に投げ入れる。

(maximally entangled)

theorist’s toy model

n copies n : Bekenstein-Hawking entropy
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Bob has an access to both early and late radiations !
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 - Bob needs to collect just a few qubits from D.

“Black hole as mirrors” (Hayden-Preskill 2007)

EPR

Figure 3: The Hayden-Preskill thought experiment. U represents the time-evolution of the black hole
and V represents a recovery unitary.
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本当に情報を再構築できるのか？

• Hayden-Preskillの仮定: Haar random unitary

Equations

Beni Yoshida

Perimeter Institute for Theoretical Physics

(Dated: January 14, 2021)

I. EQUATIONS

e
iHt ⇡ Haar random unitary ? (1)

I
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I(C,D) ⇡ max A A (3)
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Rt : high-energy radiation (5)

At : modes on the zone (6)
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Does it really work for actual 

black holes?

• 一体どうやって、量子状態を再構築する？

How ?

recovery



スクランブリングとは何か？



エンタングルメントの成長（発展）?

• スクランブリングはエンタングルメントの発展？
(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, …)
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エンタングルメントの成長（発展）?

• スクランブリングはエンタングルメントの発展？
(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, …)

これは熱化 ”thermalization”であって、スクランブリングではない。
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エンタングルメントの成長（発展）?

• スクランブリングはエンタングルメントの発展？
(Sekino-Susskind08, Lashkari-Stanford-Hastings-Osborne-Hayden13, …)

これは熱化 ”thermalization”であって、スクランブリングではない。

•　スクランブリングとエンタングルメントは違うもの！

Entanglement (tsunami) velocity is smaller than scrambling (butterfly) 
velocity (Hosur-Qi-Roberts-BY15)

No-go argument from causal structure of black hole spacetime (Shor18)
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• 演算子と状態の写像 (Hosur-Qi-Roberts-BY15)

Choi-Jamilkowski isomorphism

Equations

Beni Yoshida

Perimeter Institute for Theoretical Physics

(Dated: January 14, 2021)

I. EQUATIONS

Ô |Ôi (1)

e
iHt ⇡ Haar random unitary ? (2)

I
(2)(D,EC) ⇡ max (3)

I(C,D) ⇡ max A A (4)

|0i⌦n (5)

Rt : high-energy radiation (6)

At : modes on the zone (7)

Bt : modes at stretched horizon (8)
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Out-of-time order correlation function

• Out-of-time order correlator (Kitaev)

Gravitational shockwave calculations
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A Review of quantum information concepts

A.1 Scrambling

Here we recall the definition of scrambling in terms of OTOCs.

At infinite temperature, OTOCs are defined with respect to the maximally mixed state ⇢ = 1

dI:

hW (t)Z(0)Y (t)X(0)i ⌘
1

d
Tr[W (t)Z(0)Y (t)X(0)] (39)

where time-evolved operators are defined by O(t) = U †O(0)U . The phenomena of scrambling is often

associated with the decay (decorrelation) of OTOCs from their initial values when W,Z, Y,X are basis

operators such as Pauli and Majorana operators. In a more genetic language, the system is said to

be scrambling at time t if the following asymptotic decomposition holds for all the local operators

W,Z, Y,X [16]:

hW (t)Z(0)Y (t)X(0)i ⇡ hWY ihZihXi+ hZXihW ihY i � hW ihZihY ihXi (40)

where expectation values are defined by hOi ⌘
1

d Tr[O].

We immediately see that the asymptotic value for a large system size is zero when X,Y, Z,W

are traceless. This asymptotic form has been derived for Haar random unitary [35] and from the

Eigenstate Thermalization Hypothesis (ETH) [36]. Corrections to the asymptotic form are polynomially

(exponentially) suppressed with respect to the system size n for systems with (without) conserved

quantities.

At finite temperature, OTOCs are defined with respect to a thermal mixed state ⇢ = e��H/Tr(e��H):

hW (t)Z(0)Y (t)X(0)i ⌘ Tr[⇢↵W (t)⇢�Z(0)⇢�Y (t)⇢�X(0)] (41)

where

↵,�, �, � � 0 ↵+ � + � + � = 1. (42)

Specifics of ↵,�, �, � do not a↵ect the main result, and we will focus on ↵ = � = � = � = 1/4 unless

otherwise stated. We can infer the asymptotic form of finite temperature OTOCs in an analogous

manner by using thermal expectation values:

hOi ⌘ Tr(⇢O) hO1O2i ⌘ Tr(⇢↵O1⇢
�O2) ↵,� > 0 ↵+ � = 1. (43)

Again, specifics of ↵,� does not a↵ect the main result, and we will choose ↵ = � = 1/2. The asymptotic

form of OTOCs at finite temperature can be also derived from ETH [37].

Let us present some intuition behind the aforementioned definition of scrambling. The thermal

31

• A formal definition of scrambling (BY-Kitaev)

• Black hole scrambles quantum information

’t Hooft (1980s) and Kiem-Verlinde-Verlinde (1990s)

Shenker-Stanford and Kitaev (2014) for AdS black hole

This goes beyond Hawking’s semi-classical calculation
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where time-evolved operators are defined by O(t) = U †O(0)U . The phenomena of scrambling is often

associated with the decay (decorrelation) of OTOCs from their initial values when W,Z, Y,X are basis
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hOi ⌘ Tr(⇢O) hO1O2i ⌘ Tr(⇢↵O1⇢
�O2) ↵,� > 0 ↵+ � = 1. (43)

Again, specifics of ↵,� does not a↵ect the main result, and we will choose ↵ = � = 1/2. The asymptotic
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hOi ⌘ Tr(⇢O) hO1O2i ⌘ Tr(⇢↵O1⇢
�O2) ↵,� > 0 ↵+ � = 1. (43)
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be scrambling at time t if the following asymptotic decomposition holds for all the local operators

W,Z, Y,X [16]:

hW (t)Z(0)Y (t)X(0)i ⇡ hWY ihZihXi+ hZXihW ihY i � hW ihZihY ihXi (40)

where expectation values are defined by hOi ⌘
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Eigenstate Thermalization Hypothesis (ETH) [36]. Corrections to the asymptotic form are polynomially
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Here we recall the definition of scrambling in terms of OTOCs.

At infinite temperature, OTOCs are defined with respect to the maximally mixed state ⇢ = 1
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hW (t)Z(0)Y (t)X(0)i ⌘
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Tr[W (t)Z(0)Y (t)X(0)] (39)

where time-evolved operators are defined by O(t) = U †O(0)U . The phenomena of scrambling is often

associated with the decay (decorrelation) of OTOCs from their initial values when W,Z, Y,X are basis

operators such as Pauli and Majorana operators. In a more genetic language, the system is said to

be scrambling at time t if the following asymptotic decomposition holds for all the local operators

W,Z, Y,X [16]:

hW (t)Z(0)Y (t)X(0)i ⇡ hWY ihZihXi+ hZXihW ihY i � hW ihZihY ihXi (40)

where expectation values are defined by hOi ⌘
1

d Tr[O].

We immediately see that the asymptotic value for a large system size is zero when X,Y, Z,W

are traceless. This asymptotic form has been derived for Haar random unitary [35] and from the

Eigenstate Thermalization Hypothesis (ETH) [36]. Corrections to the asymptotic form are polynomially

(exponentially) suppressed with respect to the system size n for systems with (without) conserved

quantities.

At finite temperature, OTOCs are defined with respect to a thermal mixed state ⇢ = e��H/Tr(e��H):
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where
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Specifics of ↵,�, �, � do not a↵ect the main result, and we will focus on ↵ = � = � = � = 1/4 unless

otherwise stated. We can infer the asymptotic form of finite temperature OTOCs in an analogous
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Beni Yoshida

Perimeter Institute for Theoretical Physics

(Dated: January 14, 2021)

I. EQUATIONS

Ô |Ôi V (0) (1)

e
iHt ⇡ Haar random unitary ? (2)

I
(2)(D,EC) ⇡ max (3)

I(C,D) ⇡ max A A (4)

|0i⌦n (5)

Rt : high-energy radiation (6)

At : modes on the zone (7)

Bt : modes at stretched horizon (8)
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Here we recall the definition of scrambling in terms of OTOCs.
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where time-evolved operators are defined by O(t) = U †O(0)U . The phenomena of scrambling is often

associated with the decay (decorrelation) of OTOCs from their initial values when W,Z, Y,X are basis

operators such as Pauli and Majorana operators. In a more genetic language, the system is said to

be scrambling at time t if the following asymptotic decomposition holds for all the local operators
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are traceless. This asymptotic form has been derived for Haar random unitary [35] and from the
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Let us present some intuition behind the aforementioned definition of scrambling. The thermal
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I. EQUATIONS

Ô |Ôi V (0) (1)

e
iHt ⇡ Haar random unitary ? (2)

I
(2)(D,EC) ⇡ max (3)

I(C,D) ⇡ max A A (4)

|0i⌦n (5)

Rt : high-energy radiation (6)

At : modes on the zone (7)

Bt : modes at stretched horizon (8)
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ブラックホールから情報を取
り出すことは可能である。
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Verified quantum information scrambling
K. A. Landsman1*, C. Figgatt1,6, T. Schuster2, N. M. Linke1, B. Yoshida3, N. Y. Yao2,4 & C. Monroe1,5

Quantum scrambling is the dispersal of local information into 
many-body quantum entanglements and correlations distributed 
throughout an entire system. This concept accompanies the 
dynamics of thermalization in closed quantum systems, and has 
recently emerged as a powerful tool for characterizing chaos in 
black holes1–4. However, the direct experimental measurement 
of quantum scrambling is difficult, owing to the exponential 
complexity of ergodic many-body entangled states. One way to 
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling 
leads to their decay, OTOCs do not generally discriminate between 
quantum scrambling and ordinary decoherence. Here we implement 
a quantum circuit that provides a positive test for the scrambling 
features of a given unitary process5,6. This approach conditionally 
teleports a quantum state through the circuit, providing an 
unambiguous test for whether scrambling has occurred, while 
simultaneously measuring an OTOC. We engineer quantum 
scrambling processes through a tunable three-qubit unitary 
operation as part of a seven-qubit circuit on an ion trap quantum 
computer. Measured teleportation fidelities are typically about 80 
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

The dynamics of strongly interacting quantum systems lead to the 
local memory loss of initial conditions, analogous to the chaotic behav-
iour of classical systems. At first glance, this appears inconsistent with 
the reversible or unitary nature of quantum time-evolution. The reso-
lution lies in the fact that such local quantum information generically 
becomes delocalized throughout the entire system, and thus hidden 
in nonlocal degrees of freedom. This quantum scrambling process has 
sharpened our understanding of the limits of thermalization and chaos 
in quantum systems1–4. At one extreme, certain disordered systems can 
evade thermalization entirely, leading to the slow logarithmic spread of 
quantum information7. At the other extreme, the existence of a max-
imum speed limit for thermalization—known as ‘fast-scrambling’—
is conjectured to occur in certain large-N gauge theories8 as well as 
the dynamics of black holes1–4. Synergy with the latter extends both 
ways: many of the tools and ideas originally developed in the context 
of black hole physics9–12 have been found to be useful in characterizing 
the scrambling behaviour of generic many-body systems.

These wide-ranging impacts of quantum scrambling have stimulated 
the search for experimental evidence13–19 of scrambling dynamics that 
could help shed light on quantum non-equilibrium processes in exotic 
materials20,21 and the fast-scrambling dynamics of black holes1–4. 
Recent work has focused on so-called OTOCs3,4,22, which take the form 
V W t VW tˆ ˆ ( ) ˆ ˆ ( )† † , where V̂ and Ŵ are unitary operators acting on sep-

arate subsystems. The operator =W t U WUˆ ( ) ˆ ˆ ˆ†  is the time-evolved 
version of W under the unitary operator = − HÛ e i tˆ  generated through 
either a Hamiltonian H or an equivalent digital quantum circuit. As 
scrambling proceeds, W tˆ ( ) becomes increasingly nonlocal, causing the 
OTOC to decay23, which is taken as an experimental indication of 
scrambling15–18.

However, it is difficult to distinguish between information scram-
bling and extrinsic decoherence in the OTOC’s temporal decay.  

For example, non-unitary time-evolution arising from depolarization 
or classical noise processes naturally lead the OTOC to decay, even in 
the absence of quantum scrambling. A similar decay can also originate 
from even slight mismatches between the purported forward and back-
wards time-evolution of W tˆ ( ) (refs 6,16 and 24). Although full quantum 
tomography can in principle distinguish scrambling from decoherence 
and experimental noise, this requires a number of measurements that 
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum 
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise5,6. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family 
of unitary circuits and provide a quantitative bound on the amount of 
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the 
black-hole information paradox9,10, under the assumption that the 
dynamics of the black hole can be modelled as a random unitary oper-
ation Û  (Fig. 1). Schematically, an observer (Alice) throws a secret 
quantum state into a black hole, while an outside observer (Bob) 
attempts to reconstruct this state by collecting the Hawking radiation 
emitted at a later time1,10.

An explicit decoding protocol has been recently proposed5,6, which 
enables Bob to decode Alice’s state using a quantum memory, an ancil-
lary entangled pair of qubits, and knowledge of the effective black-hole 
unitary Û  (ref. 25). The protocol requires Bob to apply ∗Û  to his own 
quantum memory and one half of the ancillary entangled pair. 
Following this, Bob performs a projective measurement, which plays 
the part of teleporting Alice’s secret quantum state to the reference qubit 
in Bob’s ancillary entangled pair. The successful decoding of Alice’s 
quantum information is only possible because of the maximally scram-
bling dynamics of the unitary, which ensure that the information about 
Alice’s secret state is almost immediately distributed throughout the 
entire system1,26. Since maximally scrambling dynamics are requisite 
for successful teleportation, the teleportation fidelity provides a fail-safe 
diagnostic for true quantum information scrambling (see Methods 
section ‘Brief overview of quantum teleportation’).

Unlike a direct measurement of OTOCs, this protocol can explicitly 
distinguish scrambling from either decoherence or a mismatch between 
forward and backward time-evolution (that is, the encoding and decod-
ing unitaries Û  and ∗Û ). Moreover, the success probability of the pro-
jective measurement provides an independent measure of the average 
experimental value of the OTOC, which includes the effects of both 
noise and decoherence6. By comparing the teleportation fidelity and 
the success probability, one can quantitatively and unambiguously 
bound the amount of quantum scrambling by the unitary operation Û.

We experimentally implement the above teleportation protocol on 
a seven-qubit fully connected quantum computer27 using a family of 
three-qubit scrambling unitaries Ûs. Our quantum computer is realized 
with a crystal of trapped atomic +Yb171  ion qubits, defined by the hyper-
fine ‘clock’ states, as described in Methods section ‘Experimental 
details’. We confine nine ions in the linear ion trap and use the nearly 
equally spaced middle seven ions for the circuit. We can drive single 
qubit gates on any of the seven qubits with a typical fidelity of 99.0(5)% 
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and entangling two-qubit gates on any pair of qubits with a typical 
fidelity of 98.5(5)% (see Methods section ‘Experimental details’). 
Projective measurements of the qubits in any basis are performed with 
standard fluorescence techniques28, with a qubit readout fidelity of 
99.4(1)%. In combination, Bell state preparation and measurement can 
be performed with a fidelity of 98(1)% and are generated by a compiler 
that pieces together native, one- and two-qubit gates to produce the 
desired gates in a modular fashion27.

A schematic of the experiment is depicted in Fig. 1. The first qubit is 
prepared in a designated single-qubit state ∣ ⟩ψ . We initialize the six 
additional qubits in three Einstein–Podolsky–Rosen (EPR) pairs, 
∣ ⟩ ∣ ⟩ ∣ ⟩= +EPR ( 00 11 )1

2
, between qubits (2, 5), (3, 4) and (6, 7). We 

perform the scrambling unitary Ûs on qubits 1 to 3, and the decoding 
unitary = ∗U Uˆ ˆ

d s  on qubits 4 to 6. The explicit form of these unitaries 
and their decompositions into two-qubit gates is detailed in Methods 
section ‘Implementing and optimizing scrambling operators’. We com-
plete the decoding protocol by projectively measuring any designated 
pair of qubits—a chosen qubit ∈p {1, 2, 3} and its complement qubit 

− ∈p(7 ) {4, 5, 6}—onto an EPR pair. In the absence of decoherence and 
errors, the probability ψP  of a successful projective measurement can 
be directly related to the OTOC by:

⟨ ⟩∑=ψ
φ

P O O t O O tˆ ˆ ( ) ˆ ˆ ( ) (1)
O, ˆ

1
†

P
†

1 P
P

where ∣ ⟩ ⟨ ∣ψ φ≡Ô1  acts on qubit 1, ∑φ O, ˆ
P
 denotes an average over  

single-qubit quantum states φ and the Pauli operators ÔP acting on  
the projectively measured qubit, and5,6 =O t U O Uˆ ( ) ˆ ˆ ˆ

P s
†

P s . If the EPR 
projection is successful, the decoding of the initial state ∣ ⟩ψ  can  
be quantified via the teleportation fidelity: ∣ ⟨ ∣ ⟩ ∣ϕ ψ=ψF 2, where ∣ ⟩ϕ   

is the final state of the ancillary qubit 7. To characterize the nature of  
different scrambling unitaries, we repeat this protocol for initial states 
∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ ∈ { 0 , 1 , 0 , 1 , 0 , 1 }x x y y z z , where ∣ ⟩α0(1)  denotes the 
positive (negative) eigenstate of the Pauli operator σα.

We begin by illustrating the challenge associated with interpreting 
conventional OTOC experimental measurements15–18. In particular, 
we perform a control experiment with a non-scrambling unitary in the 
presence of deliberate experimental errors (Fig. 2a): specifically, we take 
Ûs to be the identity operation, and introduce single-qubit rotational 
errors (parameterized by strength θ) following the operation of Ûs, but 
not the decoding operation Ûd, creating a mismatch between forward 
and backward time-evolution. To allow for a fair comparison with the 
case of maximally scrambling unitaries, we implement the identity 
operator as a combination of one- and two-qubit gates of comparable 
complexity (and total number). As we increase the size of the mismatch 
error, we see that the average OTOC (as measured by ψP ) decays, con-
sistent with the expected sensitivity of the OTOC to experimental noise 
(Fig. 2). Crucially however, the decoding fidelity remains constant near 
50%, the expected fidelity for an unknown qubit state, confirming that 
no scrambling has taken place.

In the ideal case, both the teleportation fidelity ψF( )  and the average 
OTOC ψP( )  probe only scrambling and are thus redundant. This is 
reflected in the error-free relation + − =ψ ψ ψd d F P P[( 1) ] 11 1 , where 
d1 is the dimension of the initial state ∣ ⟩ψ  (in our case, d1 = 2) and the 
average is performed over all initial states. Decoherence and experi-
mental error lead to deviations from this relation, which we quantify 
with the effective noise factor6

⟨ ⟩ ⟨ ⟩≡ + −ψ ψ ψN d d F P P[( 1) ] (2)1 1

whose decay from unity signals the presence of error-induced OTOC 
decay in our quantum circuit. Note that =N 1 in the ideal case  
and = .N 0 25 (that is, / d1 1

2) in the fully decohered case. As expected, 
the observed N  decreases with increasing mismatch (Fig. 2e), reflect-
ing the deliberate error-induced decay of the OTOC, despite the lack 
of any quantum scrambling dynamics. Moreover, the measured value 
of N  ≈ 0.60–0.75 at zero mismatch (θ = 0) reflects the inherent errors 
in the experiment, which are expected from the many gates compris-
ing the EPR preparation, unitary operation and EPR measurement.

With the control experiment in hand, we now characterize informa-
tion scrambling for a family of unitary operators αÛ ( )s  that continu-
ously interpolate (Fig. 2b) between the identity operator (α = 0) and a 
maximally scrambling unitary (α = 1), as described in Methods section 
‘Implementing and optimizing scrambling operators’. The gate decom-
position of the αÛ ( )s  operation varies only in single-qubit rotations 
about the z-axis, which are performed classically with negligible error. 
Similar to the previous case, we observe the average OTOC to decay as 
the scrambling parameter, α, is tuned from 0 to 1, as shown in Fig. 2c. 
However, unlike the case of the deliberate mismatch-error in Fig. 2a, 
the OTOC decay is accompanied by an increase in the decoding tele-
portation fidelity, indicating the presence of true quantum information 
scrambling. Measurement of a relatively constant noise factor confirms 
that the experimental error does not depend strongly on the parameter 
α and thus cannot fully account for the decay of the OTOC. In our 
system, the error scales with the number and type of gates, which are 
constant across the interpolation.

Using our experimentally measured noise factor N , we can bound 
the true, scrambling-induced decay of the OTOC for error-free 
time-evolution via the unitaries αÛ ( )s . Assuming that extrinsic deco-
herence is negligible (that is, that coherent errors dominate the exper-
iment), we find that the ideal average OTOC can be upper-bounded 
by6: ⟨ ⟩ /ψ NP4 2 2. Therefore, we can experimentally upper-bound the 
value of the OTOC for the maximally scrambling unitary, α =Û ( 1)s , by 
approximately 0.47(2).

To demonstrate that our scrambling unitaries are indeed delocalizing 
information across the entire system, we show that teleportation  
succeeds independently of the chosen subsystem partition. To do this, 
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Fig. 1 | Experimental quantum circuit. Schematic of our 7-qubit circuit, 
which uses quantum teleportation to detect information scrambling. Qubit 
1 represents the state to be teleported, while the remaining six qubits are 
prepared in EPR pairs (vertical lines). The first three qubits are acted on by 
the unitary, Û , whose scrambling properties are to be characterized. To 
perform teleportation, qubits 4 to 6 are acted on by the conjugate unitary 

∗Û , and a projective EPR measurement is performed on any pair of qubits: 
(3, 4), (2, 5) or (1, 6). If the unitary Û  is maximally scrambling, the 
information stored in qubit 1 is delocalized, and decoding becomes 
possible, as seen by the measurement-heralded teleportation of qubit 1’s 
state to qubit 7. The underlay depicts an analogy between our protocol and 
information propagation through a traversable wormhole11,12; within this 
interpretation, Alice attempts to teleport her qubit to Bob, who has control 
over qubits 3 to 7. This interpretation is further clarified in the discussions.
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Verified quantum information scrambling
K. A. Landsman1*, C. Figgatt1,6, T. Schuster2, N. M. Linke1, B. Yoshida3, N. Y. Yao2,4 & C. Monroe1,5

Quantum scrambling is the dispersal of local information into 
many-body quantum entanglements and correlations distributed 
throughout an entire system. This concept accompanies the 
dynamics of thermalization in closed quantum systems, and has 
recently emerged as a powerful tool for characterizing chaos in 
black holes1–4. However, the direct experimental measurement 
of quantum scrambling is difficult, owing to the exponential 
complexity of ergodic many-body entangled states. One way to 
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling 
leads to their decay, OTOCs do not generally discriminate between 
quantum scrambling and ordinary decoherence. Here we implement 
a quantum circuit that provides a positive test for the scrambling 
features of a given unitary process5,6. This approach conditionally 
teleports a quantum state through the circuit, providing an 
unambiguous test for whether scrambling has occurred, while 
simultaneously measuring an OTOC. We engineer quantum 
scrambling processes through a tunable three-qubit unitary 
operation as part of a seven-qubit circuit on an ion trap quantum 
computer. Measured teleportation fidelities are typically about 80 
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

The dynamics of strongly interacting quantum systems lead to the 
local memory loss of initial conditions, analogous to the chaotic behav-
iour of classical systems. At first glance, this appears inconsistent with 
the reversible or unitary nature of quantum time-evolution. The reso-
lution lies in the fact that such local quantum information generically 
becomes delocalized throughout the entire system, and thus hidden 
in nonlocal degrees of freedom. This quantum scrambling process has 
sharpened our understanding of the limits of thermalization and chaos 
in quantum systems1–4. At one extreme, certain disordered systems can 
evade thermalization entirely, leading to the slow logarithmic spread of 
quantum information7. At the other extreme, the existence of a max-
imum speed limit for thermalization—known as ‘fast-scrambling’—
is conjectured to occur in certain large-N gauge theories8 as well as 
the dynamics of black holes1–4. Synergy with the latter extends both 
ways: many of the tools and ideas originally developed in the context 
of black hole physics9–12 have been found to be useful in characterizing 
the scrambling behaviour of generic many-body systems.

These wide-ranging impacts of quantum scrambling have stimulated 
the search for experimental evidence13–19 of scrambling dynamics that 
could help shed light on quantum non-equilibrium processes in exotic 
materials20,21 and the fast-scrambling dynamics of black holes1–4. 
Recent work has focused on so-called OTOCs3,4,22, which take the form 
V W t VW tˆ ˆ ( ) ˆ ˆ ( )† † , where V̂ and Ŵ are unitary operators acting on sep-

arate subsystems. The operator =W t U WUˆ ( ) ˆ ˆ ˆ†  is the time-evolved 
version of W under the unitary operator = − HÛ e i tˆ  generated through 
either a Hamiltonian H or an equivalent digital quantum circuit. As 
scrambling proceeds, W tˆ ( ) becomes increasingly nonlocal, causing the 
OTOC to decay23, which is taken as an experimental indication of 
scrambling15–18.

However, it is difficult to distinguish between information scram-
bling and extrinsic decoherence in the OTOC’s temporal decay.  

For example, non-unitary time-evolution arising from depolarization 
or classical noise processes naturally lead the OTOC to decay, even in 
the absence of quantum scrambling. A similar decay can also originate 
from even slight mismatches between the purported forward and back-
wards time-evolution of W tˆ ( ) (refs 6,16 and 24). Although full quantum 
tomography can in principle distinguish scrambling from decoherence 
and experimental noise, this requires a number of measurements that 
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum 
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise5,6. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family 
of unitary circuits and provide a quantitative bound on the amount of 
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the 
black-hole information paradox9,10, under the assumption that the 
dynamics of the black hole can be modelled as a random unitary oper-
ation Û  (Fig. 1). Schematically, an observer (Alice) throws a secret 
quantum state into a black hole, while an outside observer (Bob) 
attempts to reconstruct this state by collecting the Hawking radiation 
emitted at a later time1,10.

An explicit decoding protocol has been recently proposed5,6, which 
enables Bob to decode Alice’s state using a quantum memory, an ancil-
lary entangled pair of qubits, and knowledge of the effective black-hole 
unitary Û  (ref. 25). The protocol requires Bob to apply ∗Û  to his own 
quantum memory and one half of the ancillary entangled pair. 
Following this, Bob performs a projective measurement, which plays 
the part of teleporting Alice’s secret quantum state to the reference qubit 
in Bob’s ancillary entangled pair. The successful decoding of Alice’s 
quantum information is only possible because of the maximally scram-
bling dynamics of the unitary, which ensure that the information about 
Alice’s secret state is almost immediately distributed throughout the 
entire system1,26. Since maximally scrambling dynamics are requisite 
for successful teleportation, the teleportation fidelity provides a fail-safe 
diagnostic for true quantum information scrambling (see Methods 
section ‘Brief overview of quantum teleportation’).

Unlike a direct measurement of OTOCs, this protocol can explicitly 
distinguish scrambling from either decoherence or a mismatch between 
forward and backward time-evolution (that is, the encoding and decod-
ing unitaries Û  and ∗Û ). Moreover, the success probability of the pro-
jective measurement provides an independent measure of the average 
experimental value of the OTOC, which includes the effects of both 
noise and decoherence6. By comparing the teleportation fidelity and 
the success probability, one can quantitatively and unambiguously 
bound the amount of quantum scrambling by the unitary operation Û.

We experimentally implement the above teleportation protocol on 
a seven-qubit fully connected quantum computer27 using a family of 
three-qubit scrambling unitaries Ûs. Our quantum computer is realized 
with a crystal of trapped atomic +Yb171  ion qubits, defined by the hyper-
fine ‘clock’ states, as described in Methods section ‘Experimental 
details’. We confine nine ions in the linear ion trap and use the nearly 
equally spaced middle seven ions for the circuit. We can drive single 
qubit gates on any of the seven qubits with a typical fidelity of 99.0(5)% 
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and entangling two-qubit gates on any pair of qubits with a typical 
fidelity of 98.5(5)% (see Methods section ‘Experimental details’). 
Projective measurements of the qubits in any basis are performed with 
standard fluorescence techniques28, with a qubit readout fidelity of 
99.4(1)%. In combination, Bell state preparation and measurement can 
be performed with a fidelity of 98(1)% and are generated by a compiler 
that pieces together native, one- and two-qubit gates to produce the 
desired gates in a modular fashion27.

A schematic of the experiment is depicted in Fig. 1. The first qubit is 
prepared in a designated single-qubit state ∣ ⟩ψ . We initialize the six 
additional qubits in three Einstein–Podolsky–Rosen (EPR) pairs, 
∣ ⟩ ∣ ⟩ ∣ ⟩= +EPR ( 00 11 )1

2
, between qubits (2, 5), (3, 4) and (6, 7). We 

perform the scrambling unitary Ûs on qubits 1 to 3, and the decoding 
unitary = ∗U Uˆ ˆ

d s  on qubits 4 to 6. The explicit form of these unitaries 
and their decompositions into two-qubit gates is detailed in Methods 
section ‘Implementing and optimizing scrambling operators’. We com-
plete the decoding protocol by projectively measuring any designated 
pair of qubits—a chosen qubit ∈p {1, 2, 3} and its complement qubit 

− ∈p(7 ) {4, 5, 6}—onto an EPR pair. In the absence of decoherence and 
errors, the probability ψP  of a successful projective measurement can 
be directly related to the OTOC by:

⟨ ⟩∑=ψ
φ

P O O t O O tˆ ˆ ( ) ˆ ˆ ( ) (1)
O, ˆ

1
†

P
†

1 P
P

where ∣ ⟩ ⟨ ∣ψ φ≡Ô1  acts on qubit 1, ∑φ O, ˆ
P
 denotes an average over  

single-qubit quantum states φ and the Pauli operators ÔP acting on  
the projectively measured qubit, and5,6 =O t U O Uˆ ( ) ˆ ˆ ˆ

P s
†

P s . If the EPR 
projection is successful, the decoding of the initial state ∣ ⟩ψ  can  
be quantified via the teleportation fidelity: ∣ ⟨ ∣ ⟩ ∣ϕ ψ=ψF 2, where ∣ ⟩ϕ   

is the final state of the ancillary qubit 7. To characterize the nature of  
different scrambling unitaries, we repeat this protocol for initial states 
∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ ∈ { 0 , 1 , 0 , 1 , 0 , 1 }x x y y z z , where ∣ ⟩α0(1)  denotes the 
positive (negative) eigenstate of the Pauli operator σα.

We begin by illustrating the challenge associated with interpreting 
conventional OTOC experimental measurements15–18. In particular, 
we perform a control experiment with a non-scrambling unitary in the 
presence of deliberate experimental errors (Fig. 2a): specifically, we take 
Ûs to be the identity operation, and introduce single-qubit rotational 
errors (parameterized by strength θ) following the operation of Ûs, but 
not the decoding operation Ûd, creating a mismatch between forward 
and backward time-evolution. To allow for a fair comparison with the 
case of maximally scrambling unitaries, we implement the identity 
operator as a combination of one- and two-qubit gates of comparable 
complexity (and total number). As we increase the size of the mismatch 
error, we see that the average OTOC (as measured by ψP ) decays, con-
sistent with the expected sensitivity of the OTOC to experimental noise 
(Fig. 2). Crucially however, the decoding fidelity remains constant near 
50%, the expected fidelity for an unknown qubit state, confirming that 
no scrambling has taken place.

In the ideal case, both the teleportation fidelity ψF( )  and the average 
OTOC ψP( )  probe only scrambling and are thus redundant. This is 
reflected in the error-free relation + − =ψ ψ ψd d F P P[( 1) ] 11 1 , where 
d1 is the dimension of the initial state ∣ ⟩ψ  (in our case, d1 = 2) and the 
average is performed over all initial states. Decoherence and experi-
mental error lead to deviations from this relation, which we quantify 
with the effective noise factor6

⟨ ⟩ ⟨ ⟩≡ + −ψ ψ ψN d d F P P[( 1) ] (2)1 1

whose decay from unity signals the presence of error-induced OTOC 
decay in our quantum circuit. Note that =N 1 in the ideal case  
and = .N 0 25 (that is, / d1 1

2) in the fully decohered case. As expected, 
the observed N  decreases with increasing mismatch (Fig. 2e), reflect-
ing the deliberate error-induced decay of the OTOC, despite the lack 
of any quantum scrambling dynamics. Moreover, the measured value 
of N  ≈ 0.60–0.75 at zero mismatch (θ = 0) reflects the inherent errors 
in the experiment, which are expected from the many gates compris-
ing the EPR preparation, unitary operation and EPR measurement.

With the control experiment in hand, we now characterize informa-
tion scrambling for a family of unitary operators αÛ ( )s  that continu-
ously interpolate (Fig. 2b) between the identity operator (α = 0) and a 
maximally scrambling unitary (α = 1), as described in Methods section 
‘Implementing and optimizing scrambling operators’. The gate decom-
position of the αÛ ( )s  operation varies only in single-qubit rotations 
about the z-axis, which are performed classically with negligible error. 
Similar to the previous case, we observe the average OTOC to decay as 
the scrambling parameter, α, is tuned from 0 to 1, as shown in Fig. 2c. 
However, unlike the case of the deliberate mismatch-error in Fig. 2a, 
the OTOC decay is accompanied by an increase in the decoding tele-
portation fidelity, indicating the presence of true quantum information 
scrambling. Measurement of a relatively constant noise factor confirms 
that the experimental error does not depend strongly on the parameter 
α and thus cannot fully account for the decay of the OTOC. In our 
system, the error scales with the number and type of gates, which are 
constant across the interpolation.

Using our experimentally measured noise factor N , we can bound 
the true, scrambling-induced decay of the OTOC for error-free 
time-evolution via the unitaries αÛ ( )s . Assuming that extrinsic deco-
herence is negligible (that is, that coherent errors dominate the exper-
iment), we find that the ideal average OTOC can be upper-bounded 
by6: ⟨ ⟩ /ψ NP4 2 2. Therefore, we can experimentally upper-bound the 
value of the OTOC for the maximally scrambling unitary, α =Û ( 1)s , by 
approximately 0.47(2).

To demonstrate that our scrambling unitaries are indeed delocalizing 
information across the entire system, we show that teleportation  
succeeds independently of the chosen subsystem partition. To do this, 
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Fig. 1 | Experimental quantum circuit. Schematic of our 7-qubit circuit, 
which uses quantum teleportation to detect information scrambling. Qubit 
1 represents the state to be teleported, while the remaining six qubits are 
prepared in EPR pairs (vertical lines). The first three qubits are acted on by 
the unitary, Û , whose scrambling properties are to be characterized. To 
perform teleportation, qubits 4 to 6 are acted on by the conjugate unitary 

∗Û , and a projective EPR measurement is performed on any pair of qubits: 
(3, 4), (2, 5) or (1, 6). If the unitary Û  is maximally scrambling, the 
information stored in qubit 1 is delocalized, and decoding becomes 
possible, as seen by the measurement-heralded teleportation of qubit 1’s 
state to qubit 7. The underlay depicts an analogy between our protocol and 
information propagation through a traversable wormhole11,12; within this 
interpretation, Alice attempts to teleport her qubit to Bob, who has control 
over qubits 3 to 7. This interpretation is further clarified in the discussions.
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究極の目的：ブラックホールのユニタリー性を観測的
に確かめる。
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