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Axion/Hidden-Photon Dark Matter 
Conversion into 

Condensed Matter Axion
~ searching for  axion(ALPs), hidden photon DM𝒪(1) meV

1

S. Chigusa, K. Nakayama, T. Moroi, arXiv: 2102.06179
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Dark Matter as a hint of new physics

2

✓DM existence, abundance 
✓Has gravitational interaction

“Known”
✓DM mass 
✓Non-gravitational interactions

“Unkown”
Wikipedia “Galaxy rotation curve”, E. Corbelli, P. Salucci (2000) Wikipedia “Cosmic microwave background”, 9 years of WMAP data
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Various DM models

3

✓Common features 
- Abundance:  around us 

- Velocity:  

✓Model dependent features 
- Broad mass window 
- Interaction with visible particles 

✓How to detect DM candidates?

ρχ ∼ 0.3 GeV/cm3

vχ ∼ 10−3c
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Direct detection of DM

4

✓Example: DM-nucleus scattering

✓Recently more focus on lighter region
CF1 Snowmass report, 1310.8327

Wikipedia “XENON experiment”

DM
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Target (quasi-)particle for direct detection

5

✓Collective modes are important for light DM (  )mχ ≲ MeV
Today I focus on “axion quasi-particle”



Introduction to axion excitation
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Summary: What is “axion”?
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✓“Axion” is fluctuation of spins  inside magnetic materialsδθ

δθ γ5

Dirac electron ψ

γ

γ

∝ δθ FμνF̃μν

“axion” is named after 
this interaction

R. Li, J. Wang, X. Qi, S. Zhang Nature Physics 6, 284‒288 (2010)

✓Example: Anti-ferromagnetic topological insulator
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Summary: Fu-Kane-Mele-Hubbard model

8

 

　　  

　　

H = − ∑
⟨i,j⟩,σ

tij c†
iσcjσ

+iλ ∑
<<i,j>>

c†
i ⃗σ ⋅ ( ⃗d 1

ij × ⃗d 2
ij)cj

+U∑
i

ni↑ni↓

Fu-Kane-Mele model 
(Model of topological insulator)

Hubbard interaction 
- Anti-ferromagnetic ordering 
- Spin-electron interaction
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✓Hamiltonian (Effective model of outermost electrons) 
 

-  : electron annihilation operator @ site  w/ spin  

✓Distorted diamond lattice: 

H = − ∑
<i,j>

∑
σ

tij c†
iσcjσ + iλ ∑

<<i,j>>

c†
i ⃗σ ⋅ ( ⃗d 1

ij × ⃗d 2
ij)cj

ciσ i σ

Fu-Kane-Mele model

9

A. Sekine, K. Nomura J. Phys. Soc. Jpn. 83, 104709 (2014)

J. Phys. Soc. Jpn. FULL PAPERS

When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X

hi, ji,�

ti jc
†

i�c j� + i
4�
a2

X

hhi, jii

c
†

i
� · (d1

i j
⇥ d2

i j
)c j, (4)

and the interaction part

Hint = U

X

i

ni"ni# +
X

hi, ji

Vi jnin j, (5)

where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
primitive translation vectors. In the following, we set a = 1.
The alpha matrices ↵µ are given by the chiral representation:

↵ j =

"
� j 0
0 �� j

#
, ↵4 =

"
0 1
1 0

#
, ↵5 =

"
0 �i

i 0

#
, (8)

where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by

(�1)⌫0 =
8Y

i=1

sgn

2
6666664t + �t1 + t

3X

p=1

cos
⇣
�i · ap

⌘
3
7777775 , (9)

where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or

2

lattice structure Brillouin zone

Spin-orbit interaction

-   for some specific direction 

-         for others 

tij = t + δt

tij = t
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When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X
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Hint = U
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where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
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where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by
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where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or
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3 Dirac points

✓  annihilation operators in momentum space 
-  

-  

✓4-band model 

•  

•  

✓Energy eigenvalues 

e−

c ⃗k ↑,A, c ⃗k ↓,A, c ⃗k ↑,B, c ⃗k ↓,B

c ⃗k = (c ⃗k ↑,A c ⃗k ↓,A c ⃗k ↑,B c ⃗k ↓,B)T

H = ∑⃗
k

c†
⃗k
ℋ ⃗k c ⃗k

ℋ ⃗k =
5

∑
μ=1

Rμ( ⃗k )αμ

E±( ⃗k ) = ± ∑
μ

(Rμ( ⃗k ))
2

Band structure of FKM model

10

A

B

Symmetry enhanced points 
small gap ∼ δt

L. Fu, C. L. Kane, E. J. Mele, PRL 98, 106803 (2007)

 

 

αi = (σi 0
0 −σi), α4 = ( 0 −1

−1 0 ), α5 = (0 −i
i 0 )

{αμ, αν} = 2δμν
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✓Coulomb interaction makes it difficult to fill 2 s in an orbital 

✓Large  limit, treating  as perturbation 

 

✓  → Anti-ferromagnetic ordering

e−

U t

Heff ∼ Ht
1

HU
Ht =

t2

U ∑
<i,j>

⃗S i ⋅ ⃗S j

t2/U > 0

Hubbard interaction and magnetism

11

H = − t ∑
<i,j>

∑
σ

c†
iσcjσ niσ = c†

iσciσ+U∑
i

ni↑ni↓

Hubbard interaction

i, A i, B i + 1,A i + 1,B
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Spin - electron interaction

12

✓Order parameter ⟨ ⃗S i,A⟩ = − ⟨ ⃗S i,B⟩ ≡ ⃗m

✓Mean-field approximation on HU = U∑
i

ni↑ni↓

HU ≃ U∑
i

( < ni↑ > ni↓ + < ni↓ > ni↑ − < ni↑ > < ni↓ >

− < c†
i↑ci↓ > c†

i↓ci↑ − < c†
i↓ci↑ > c†

i↑ci↓ + < c†
i↑ci↓ > < c†

i↓ci↑ > )
1/2 + mz 1/2 − mz

mx + imy mx − imy

✓Nothing but interaction between  and s⃗m e−

i, A i, B i + 1,A i + 1,B
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 phenomenologyE ≃ 𝒪(δt)

13

✓Linearlized Hamiltonian around a Dirac point 

•  

•  

w/  &  

✓Equivalent effective action 

 

✓Properties of 3 Dirac electrons 
- mimics free relativistic particles with mass  (at linear approximation) 
- axionic (i.e., via ) interaction with magnetization

H( ⃗M1 + ⃗q ) ≃ c†
⃗M1+ ⃗q

ℋ′￼ ⃗q c ⃗M1+ ⃗q

ℋ′￼ ⃗q = ∑
i

q′￼iαi + δtα4 + Umxα5

q′￼1 = atq1, q′￼2 = 2aλq2, q′￼3 = 2aλq3 {αμ, αν} = 2δμν

S = ∫ d4x ∑
r=1,2,3

ψr [iγμ(∂μ − ieAμ) − δt − iγ5Umr] ψr

δt

γ5



2022/2/8  So Chigusa　＠ KEK IPNS-IMSS-QUP Joint workshop/ 23

 phenomenologyE ≪ δt
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✓Integrate out Dirac electrons with mass  
✓Fujikawa’s method（chiral rotation） 

 

✓Same applies for dynamical spin fluctuations 
-  

 

δt

Sθ =
αe

4π ∫ d4x θFμν F̃ μν θ ≡ π + ∑
r

θr = π + ∑
r

tan−1 ( Umr

δt )

⃗m(t, ⃗x ) = ⃗m + δ ⃗m(t, ⃗x )

δθ(t, ⃗x ) = ∑
r

U/δt
1 + U2m2

r /δt2
δmr(t, ⃗x )

with U/δt ∼ 𝒪(1)

A. Sekine, K. Nomura J. Phys. Soc. Jpn. 83, 104709 (2014)

δθ γ5

Dirac e− ψ
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Properties of spin fluctuations
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B0 = 0ω

k

B0 ≠ 0

ω = ωk ± ωL

✓2 “magnon” modes with spin  
- Common intrinsic gap  

- External  induces mass splitting  

✓Dynamical axion in FKMH is linear combination of 2 magnon modes

±1/2
ω0

⃗B 0 ωL = gμBB0

ω0

Wikipedia “Larmor Precession”



Application to DM direct detection
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Axion / Hidden-photon DM
✓Energy stored as coherent oscillation 

　　　　　　  

- mimics non-relativistic matter   
- light bosons can be DM candidates 

✓Effectively works as oscillating EM fields 
- Axion DM  

➡  under background  

- Hidden-photon DM  

➡ 

ρDM =
1
2

m2
aa2

0

ρDM ∝ (scale factor)−3

ℒaγγ = gaγγa ⃗E ⋅ ⃗B

⃗E a = − gaγγaB0
⃗B 0

ℒHee = − ϵHeHμψγμψ

⃗E H ∝ − ϵH∂t
⃗H

17
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DM direct detection w/ cond-mat axion

18

✓Axion (ALPs) DM

ℒ = gaγγa ⃗E ⋅ ⃗B

⃗B 0
⃗B 0

a
γ

δθ

✓Hidden-photon DM
ℒ = − ϵHe Hμψ̄γμψ,

Hμ δθ
Dirac e− ψ

⃗B 0

gaγγ

ϵH
kinetic mixing

D. J. E. Marsh, K. C. Fong, E. W. Lentz, L. Šmejkal, M. N. Ali, PRL 123, 121601 (2019)

J. Schütte-Engel, D. J. E. Marsh, A. J. Millar, A. Sekine, et al. [2102.05366]

S. Chigusa, T. Moroi, K. Nakayama [2102.06179]

S. Chigusa, T. Moroi, K. Nakayama [2102.06179]
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Kinematics of DM-axion conversion

19

ω

k

DM χ

✓DM de-Broglie wave length  material size 
- only  mode of axion is relevant 

✓  leads to resonant conversion 

- scan  to search for broad mass range

>
k = 0

mχ ≃ ω0 ± ωL

⃗B 0

pμ
χ = (Eχ, ⃗p χ) ≃ (mχ,0)

Ground state

Excited states ω = ω0 ± ωL
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Sensitivities on DM candidates
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✓Axion (ALPs) DM ✓Hidden photon DM

✓ ,  obs. for each point,  &  &  

✓Typical values for material properties (mass range depend on them)
B0 = 1 T ∼ 10 T 100 s V = (10 cm)3 T = 1 yr Q = 106

S. Chigusa, T. Moroi, K. Nakayama [2102.06179]
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Comparison with magnon

21

axion magnon

excitation energy depend on anisotropy 
controlled by  . 

depend on anisotropy 
controlled by  . 

DM coupling probed

target materials anti-ferro topo insulator, etc 
FKMH, (Bi1-xFex)2Se3, Mn2Bi2Te5

magnetic material 
YIG, NiPS3

references
D. Marsh+ [1807.08810] 

J. Schütte-Engel+ [2102.05366] 
S. Chigusa+ [2102.07910]

R. Barbieri+ [1606.02201] 
S. Chigusa+ [2001.10666] 
T. Ikeda+ [2102.08764] 

A. Mitridate+ [2005.10256]

∼ 𝒪(10) meV

a − γ a − e
H − e

⃗B0
⃗B0

Soda-san’s talk

H − e
(a − N)

∼ 𝒪(10) meV
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Conclusion

22

✓Possibility of using axion excitation to search for DM 

✓Formulation and primitive estimation of sensitivity 
- Direct detection of  bosonic DM 

✓For detection of signal, quantum sensors will play important roles

𝒪(1) meV
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backup slides
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Tight-binding model

24

✓Consider electrons tightly bound to lattice points

lattice point electron cloud

i i + 1

✓Each nucleus has electron orbital with ：  

✓Small overlap of nearest orbitals : 

E = ϵ ⟨i |H | i⟩ = ϵ

⟨i |H | i + 1⟩ = − t ( | t | ≪ ϵ)

ϵ∑
i

c†
i ci −t ∑

<i,j>

c†
i cjH = Hopping term

: nearest neighbors< i, j >



2022/2/8  So Chigusa　＠ KEK IPNS-IMSS-QUP Joint workshop/ 23

Coulomb repulsion (Hubbard int.)

25

H = − t ∑
<i,j>

∑
σ

c†
iσcjσ niσ = c†

iσciσ+U∑
i

ni↑ni↓

Hubbard interaction

✓Coulomb interaction makes it difficult to fill 2 s in an orbitale−

✓Band theory of solid states tells us 
odd # of s per nucleus  metale− =

E

k

✓large  may make it insulatorU

E

k

 nucleiN = 5

Fermi surface

Mott insulator

 : electron spinσ ∈ { ↑ , ↓ }

1  per nucleuse−

However, 
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Spin-orbit interaction  Topo. insulator→

26

✓SO interaction plays important role in topological insulators

H = − t ∑
<i,j>

∑
σ

c†
iσcjσ +iλ ∑

<<i,j>>

c†
i ⃗σ ⋅ ( ⃗d 1

ij × ⃗d 2
ij)cj

Kane-Mele model

✓First example of (time-reversal symmetric) topo. insulator
C. L. Kane, E. J. Mele PRL 95 (2005) 226081 & PRL 95 (2005) 146802

3

-1

0

0 2π/aπ/a

E/t

k

1

X

X

FIG. 1: (a) One dimensional energy bands for a strip of
graphene (shown in inset) modeled by (7) with t2/t = .03.
The bands crossing the gap are spin filtered edge states.

where they become perfectly flat[16]. This leads to an en-
hanced density of states at the Fermi energy associated
with zig-zag edges. This has been recently seen in scan-
ning tunneling spectroscopy of graphite surfaces[17].

We have also considered a nearest neighbor Rashba
term, of the form iẑ · (sαβ × d)c†iαcjβ . This violates
the conservation of sz, so that the Laughlin argument
no longer applies. Nonetheless, we find that the gapless
edge states remain, provided λR < ∆so, so that the bulk
bandgap remains intact. The crossing of the edge states
at the Brillouin zone boundary kx = π/a in Fig. 1 (or at
k = 0 for the armchair edge) is protected by time reversal
symmetry. The two states at kx = π/a form a Kramers
doublet whose degeneracy cannot be lifted by any time
reversal symmetric perturbation. Moreover, the degen-
erate states at kx = π/a± q are a Kramers doublet. This
means that elastic backscattering from a random poten-
tial is forbidden. More generally, scattering from a region
of disorder can be characterized by a 2 × 2 unitary S-
matrix which relates the incoming and outgoing states:
Φout = SΦin, where Φ is a two component spinor con-
sisting of the left and right moving edge states φL↑, φR↓.
Under time reversal Φin,out → syΦ∗

out,in. Time reversal

symmetry therefore imposes the constraint S = syST sy,
which rules out any off diagonal elements.

Electron interactions can lead to backscattering. For
instance, the term uψ†

L↑∂xψ
†
L↑ψR↓∂xψR↓, does not vio-

late time reversal, and will be present in an interacting
Hamiltonian. For weak interactions this term is irrele-

vant under the renormalization group, since its scaling
dimension is ∆ = 4. It thus will not lead to an energy
gap or to localization. Nonetheless, it allows inelastic
backscattering. To leading order in u it gives a finite
conductivity of the edge states, which diverges at low
temperature as u−2T 3−2∆[18]. Since elastic backscatter-
ing is prevented by time reversal there are no relevant
backscattering processes for weak interactions. This sta-
bility against interactions and disorder distinguishes the

V/2

V

-V/2

0

0 0

(b)

(a)

I

Is

FIG. 2: Schematic diagrams showing (a) two terminal and
(b) four terminal measurement geometries. In (a) a charge
current I = (2e2/h)V flows into the right lead. In (b) a spin
current Is = (e/4π)V flows into the right lead. The diagrams
to the right indicate the population of the edge states.

spin filtered edge states from ordinary one dimensional
wires, which are localized by weak disorder.

A parallel magnetic field H‖ breaks time reversal and
leads to an avoided crossing of the edge states. H‖ also
reduces the symmetry, allowing terms in the Hamiltonian
which provide a continuously gapped path connecting the
states generated by σzτzsz and σz. Thus in addition to
gapping the edge states H‖ eliminates the topological dis-
tinction between the QSH phase and a simple insulator.

The spin filtered edge states have important conse-
quences for both the transport of charge and spin. In
the limit of low temperature we may ignore the inelastic
backscattering processes, and describe the ballistic trans-
port in the edge states within a Landauer-Büttiker[19]
framework. For a two terminal geometry (Fig. 2a),
we predict a ballistic two terminal charge conductance
G = 2e2/h. For the spin filtered edge states the edge
current density is related to the spin density, since both
depend on nR↑ − nL↓. Thus the charge current is ac-
companied by spin accumulation at the edges. The in-
terplay between charge and spin can be probed in a mul-
titerminal device. Define the multiterminal spin conduc-
tance by Is

i =
∑

j Gs
ijVj . Time reversal symmetry re-

quires Gs
ji = −Gs

ij , and from Fig. 2b it is clear that
Gs

ij = ±e/4π for adjacent contacts i and j. In the four
terminal geometry of Fig. 2b a spin current Is = eV/4π
flows into the right contact. This geometry can also be
used to measure a spin current. A spin current incident
from the left (injected, for instance with a ferromagnetic
contact) will be split, with the up (down) spins trans-

Fermi surface

“edge states”

2D Honeycomb lattice

A

B
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Relationship w/ topology
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✓Normal / Topological insulators have different topologies 
- Topological invariant  is evaluated w/ berry connection  

- Time reversal symmetry forces  to be one of below 
•  （normal insulator） 
•  （topological insulator） 

- SPT phase 
= “symmetry protected topological phase”

θ

θ

θ = 0

θ = π

𝒜αβ
i = − i⟨uα

k |
∂

∂ki
|uβ

k ⟩

Berry connection Bloch states↔︎energy eigenstates

θ ≡
1

4π ∫BZ
d3k ϵijk Tr [𝒜i∂j𝒜k + i

2
3

𝒜i𝒜j𝒜k]
Brillouin zone

= No continuous deformation

T-symmetric 
param space

T-breaking

θ = 0 θ = π
“topological” 

phase transition

no phase transition

θ ∈ [0,2π)
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 is axion termθ

28

S =
α
4π ∫ dtd3x θ Fμν F̃ μν ; F̃ μν =

1
2

ϵμνρσFρσ

= 4 ⃗E ⋅ ⃗B

-   is “static” axion term 

-  induces electric polarization  

-  induces magnetization 

θ

⃗B ⃗P ∝ θ ⃗B

⃗E ⃗M ∝ θ ⃗E

✓Topological EM response 

✓Rich phenomenology like 

- Faraday rotation 
　rotation of polarization plane 

of linearly polarized photon

cf. cosmological birefringence

V. Dziom+  Nat. Commun. 8, 15197 (2017)

- Image monopole effect
X. Qi+  Science 323, 1184 (2009)

Emergence of magnetic fields 
 as if “image monopole” exists
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✓So, what’s next? 
- Topological Insulator + Hubbard interaction 
- Anti-ferromagnetic ordering spontaneously breaks T-symmetry 

•  gives additional contribution and  

- Spin fluctuation becomes dynamical axion  
- Topological EM interaction  

 

connection to chiral anomaly

⟨ ⃗S ⟩ ≠ 0 θ ≠ π

δθ

ℒint =
α
π

δθ ⃗E ⋅ ⃗B

Sketch: emergence of dynamical axion

29

H = − t ∑
<i,j>

∑
σ

c†
iσcjσ

+U∑
i

ni↑ni↓

+iλ ∑
<<i,j>>

c†
i ⃗σ ⋅ ( ⃗d 1

ij × ⃗d 2
ij)cj

Tight-binding

Topological insulator

Anti-ferromagnet
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Topological insulator

30

✓Insulator bulk + metal surface　cf) bulk-edge correspondence 2

d1 t(1 + 2 cos x cos y) d12 −2t cos x sin y

d2 λv d15 λSO(2 sin 2x − 4 sin x cos y)

d3 λR(1 − cos x cos y) d23 −λR cos x sin y

d4 −
√

3λR sin x sin y d24

√
3λR sin x cos y

TABLE I: The nonzero coefficents in Eq. 2 with x = kxa/2
and y =

√
3kya/2.

phase and the simple insulator. This term violates the
symmetry under twofold rotations in the plane.

H is diagonalized by writing φs(R + αd) =
uαs(k)eik·R. Here s is spin and R is a bravais lattice vec-
tor built from primitive vectors a1,2 = (a/2)(

√
3ŷ ± x̂).

α = 0, 1 is the sublattice index with d = aŷ/
√

3.
For each k the Bloch wavefunction is a four compo-
nent eigenvector |u(k)〉 of the Bloch Hamiltonian ma-
trix H(k). The 16 components of H(k) may be writ-
ten in terms of the identity matrix, 5 Dirac matrices Γa

and their 10 commutators Γab = [Γa, Γb]/(2i)[9]. We
choose the following representation of the Dirac matrices:
Γ(1,2,3,4,5) = (σx ⊗ I, σz ⊗ I, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz),
where the Pauli matrices σk and sk represent the sub-
lattice and spin indices. This choice organizes the ma-
trices according to TR. The TR operator is given by
Θ|u〉 ≡ i(I ⊗ sy)|u〉∗. The five Dirac matrices are even
under TR, ΘΓaΘ−1 = Γa while the 10 commutators are
odd, ΘΓabΘ−1 = −Γab. The Hamiltonian is thus

H(k) =
5

∑

a=1

da(k)Γa +
5

∑

a<b=1

dab(k)Γab (2)

where the d(k)’s are given in Table I. Note that H(k +
G) = H(k) for reciprocal lattice vectors G, so H(k) is
defined on a torus. The TR invariance of H is reflected in
the symmetry (antisymmetry) of da (dab) under k → −k.

For λR = 0 the there is an energy gap with magnitude
|6
√

3λSO −2λv|. For λv > 3
√

3λSO the gap is dominated
by λv, and the system is an insulator. 3

√
3λSO > λv

describes the QSH phase. Though the Rashba term vio-
lates Sz conservation, for λR < 2

√
3λSO there is a finite

region of the phase diagram in Fig. 1 that is adiabatically
connected to the QSH phase at λR = 0. Fig. 1 shows the
energy bands obtained by solving the lattice model in a
zigzag strip geometry[7] for representative points in the
insulating and QSH phases. Both phases have a bulk en-
ergy gap and edge states, but in the QSH phase the edge
states traverse the energy gap in pairs. At the transition
between the two phases, the energy gap closes, allowing
the edge states to “switch partners”.

The behavior of the edge states signals a clear differ-
ence between the two phases. In the QSH phase for each
energy in the bulk gap there is a single time reversed pair
of eigenstates on each edge. Since TR symmetry prevents
the mixing of Kramers’ doublets these edge states are ro-
bust against small perturbations. The gapless states thus

0 2π0 2π
−1

0

1

−5 0 5

−5

0

5 I
QSH

λ  / λR

λ  / λv SO

SOE/
t

ka kaπ π

(a) (b)

FIG. 1: Energy bands for a one dimensional “zigzag” strip
in the (a) QSH phase λv = .1t and (b) the insulating phase
λv = .4t. In both cases λSO = .06t and λR = .05t. The edge
states on a given edge cross at ka = π. The inset shows the
phase diagram as a function of λv and λR for 0 < λSO # t.

persist even if the spatial symmetry is further reduced
(for instance by removing the C3 rotational symmetry
in (1)). Moreover, weak disorder will not lead to local-
ization of the edge states because single particle elastic
backscattering is forbidden[7].

In the insulating state the edge states do not traverse
the gap. It is possible that for certain edge potentials the
edge states in Fig. 1b could dip below the band edge,
reducing - or even eliminating - the edge gap. However,
this is still distinct from the QSH phase because there will
necessarily be an even number of Kramers pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two dimensional versions[10] of the spin Hall
insulator models[11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number
of edge state pairs. We shall see below that they are
topologically equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate
of spin accumulation at the opposite edges of a cylin-
der of circumference L, which can be computed using
Laughlin’s argument[12]. A weak circumferential electric
field E can be induced by adiabatically threading mag-
netic flux through the cylinder. When the flux increases
by h/e each momentum eigenstate shifts by one unit:
k → k + 2π/L. In the insulating state (Fig. 1b) this
has no effect, since the valence band is completely full.
However, in the QSH state a particle-hole excitation is
produced at the Fermi energy EF . Since the particle and
hole states do not have the same spin, spin accumulates
at the edge. The rate of spin accumulation defines a spin
Hall conductance d〈Sz〉/dt = Gs

xyE, where

Gs
xy =

e

h
(〈Sz〉L − 〈Sz〉R) |EF

. (3)

Here the expectation value of Sz is evaluated for the left

- Edge states localized on surface 
leads to conductivity

Topo. insulator phase Normal insulator phase

✓Hot Topics in cond-mat & significant developments after Kane-Mele 
- Bernevig-Hughes-Zhang (BHZ) model 
- HgTe/CdTe quantum well structure explained by BHZ model 

- 3 dim. topological insulators：Fu-Kane-Mele model、Bi1-xSbx

B. A. Bernevig, T. L. Hughes, S. Zhang, Science, 314, 1757 (2006)

M. König, et al. Science, Sciencexpress 318, 766 (2007)First experimental observation

L. Fu, C. L. Kane, E. J. Mele, PRL 98, 106803 (2007) D. Hsieh, Nature 452, 970 (2008)
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Quantization of spin fluctuations

31

✓Quantized spin waves  magnon= 12 Ferromagnetism and Antijerromagnetism 

Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 

C. Kittel ”Introduction to Solid State Physics [8th ed]”

✓Anti-ferromagnetic Holstein-Primakoff transf.
S+

ℓ = 2s − a†
ℓaℓ aℓ

S−
ℓ = a†

ℓ 2s − a†
ℓaℓ

Sz
ℓ = s − a†

ℓaℓ

S+
ℓ′￼

= b†
ℓ′￼

2s − b†
ℓ′￼

bℓ′￼

S−
ℓ′￼

= 2s − b†
ℓ′￼

bℓ′￼
bℓ′￼

Sz
ℓ′￼

= − s + b†
ℓ′￼

bℓ′￼

sublattice A sublattice B

Relates bosonic / spin operators 
consistently

[aℓ, a†
m] = δℓm ⇒ [Si

ℓ, Sj
m] = iϵijkSk

ℓδℓm

[bℓ′￼, b†
m′￼] = δℓ′￼m′￼ ⇒ [Si

ℓ′￼
, Sj

m′￼] = iϵijkSk
ℓ′￼

δℓ′￼m′￼
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Evaluation of hopping terms
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✓Shape and properties of  orbitals are importante−

x

px s

+− x

pxs

+−= − [            ]

x

s
py

= 0

✓Direction-dependent hopping
- contains information of shape of lattice

Slater-Koster relations

SI M PL I F I ED LCAO METHOD 1503

be expanded in the same way. In the integral (2), we
shall get a nonvanishing contribution only if we are
dealing with o components of bothy»„and &P, or or+
components of both, or x components of both, etc.
Hence we:can reduce all the various integrals appearing
in (2) to a relatively small number.

It is a straightforward matter of rotating axes and
transforming spherical harmonics in terms of one set of
axes into spherical harmonics with respect to another
set, to 6nd the nature of these integrals. Thus, let the
atomic orbitals be set up with respect to a set of
rectangular axes. We shall symbolize the p, p„, p,
functions by x, y, 2'; the various d functions by xy, yz,
sx, x'—y', and 3s'—r', which stand for the various
functions whose dependence on angle is like that of the
polynomials we have written, multiplied by appropriate
functions of r& Then to set up the integrals in (2), we
need contributions consisting of a product of an atomic
orbital of this type on the atom located at R;, another
atomic orbital on the atom at R, , and spherical po-
tentials centered on these two atoms. Let the direction
cosines of the direction of the vector R,—R,, pointing
from one atom to the other, be I, m, e. Then we can

symbolize one of the integrals by such a symbol as
E...„(l,tn, tt), meaning an integral in which the function
&P„ is a P,-like function; »P, a d function with symmetry
properties like xy. This particular function can be
written approximately in terms of two integrals: that
between a po orbital on the first atom and a do orbital
on the second; and that between a pn. on the first and
a dh on the second. Let the 6rst of these be symbolized
by (pdo) and the second by (pdir); we shall assume
that the first index, such as p, refers to the first orbital,
the second, as d, to the second, and note that inter-
changing the order of the indices has no eGect if the
sum of the parities of the two orbitals is even, but
changes the sign if the sum of the parities is odd. We
now find, by carrying out the analysis mentioned
earlier, that Z,, ,„(l,tn, n) =v3Ptn(pda)+sn(1 2P) (—pds)).
Similar formulas can be worked out for each of the
combinations of functions, and are listed in Table I for
all combinations of s, p, and d functions. The entries
not given in the table can be found by cyclically
permuting the coordinates. and direction cosines. It is
to be realized, of course, that the integrals like (pdo.)
are functions of the distance between the atoms, so

TABLE I. Energy integrals for crystal in terms of two-center integrals.

~8& 8

+8» Z

E,*

jV, 2„Z

~8& 3Z —t'

~x» gled

+a) pz

2 2~~$& Z

jv„
2

~X» 3Z —t'

~2t, 3Z —t' 2

~z, 3z —r2 2

&zy, xy

+Kg& 3tz

~@1»), ZZ

~xg& g —gP

~ZS& 8 —Q
P

~zy, 3z'-r'

~2tz& 3Z —t'2

~zz& 3z —t'

a —V»z —V
P 2 2 2

~c —f/ & 38 t'2 2 2 2

~3z —r ) 38 —l2 2 2 '2

(ssa)
L(sp~)

L'(pp )+(j.—l')(pp )
Im (ppo) —lm (ppm)

Ln(ppo) —Ln(ppx)
&31m (sdo)
—,'V3(P —m') (sd )
L

' n'{1&+m—')-5 (sda)
v3L2m (pdo.)+m (1—2P) (pdm)

V3Lmn (pd~) —2Lmn (pdm. )
~3L'+(pd&)++(& —2l') (pd~)
&&v3l(P m'-) (pdo)—+l(1 l'+m') (pdk—)
',v3m (P m'} (-pdo) m—(1+P —m'} (pd)»)—

~v3n (P—m') (pd~) —~(l' —m') (pal )
l[n' t&(P+m') 5(—pda) v31n'(pd&»)—

m pe' ', (P+m') 5(—pd-o) v3mn'(p—d»)'
npn' $(l'ym') 5(pdo—)+v3n(l'+m }(pd»r)

3Pm (dda)+ {l'+m 4l m ) (dd»&)+ (n +—l m ) (ddb)

31m&n(dda) +le (1 4m&) (dda—)+le (m& 1)(ddt)—
3Pmn (ddo) +

me 

(1 4P) (dd») +mn {P—1)(ddb)—
&&lm (P )(mdd&o) +—2lm (m l ) (dd&))+ &1m (1—m) (ddt)—

&me (P

m') (ddo) —me)1+ 2 (P—m') 7(dd»)+—me 51+& (P m') 5(ddt)—
,'nl (P n)') (dda—)+el'—l 2(P m') 5(dd&»)—el/—l s& (P —m') 5(d—db)—
V3lm/n' ,'(P+m') 5—(d-do) 2v3lmn'(dd&»)—+ ',elm (1+n') (ddb-)

v3mnLn' —-', (P+m') 5(ddo)+v3mn(P+m' —n') {dda) ——&&Amn(P+m') (ddt)
V3ln/n' s& (P+m') 5(d—do)+V3ln(P+m' n') (dd)&) ',—v3le(l'+m') (d—d-b)'

&&(P—m, )&(dda)+PP+m» —(P n) )&5(dd&»)+$n&+—i&(P m&)&5(ddb)—
t&v3(P m') pn' $(P+—m') 5(dd—o)+v3n'(m' P) (dda)+ ',v3—(1+n') (l' —m'-) (ddt)
Pm' $(P+m&) 5'(dda)+—3n'(P+m') (dd&))+ && (P+m')'(dds)-

etc.

J. C. Slater, G. F. Koster (1954)

⃗rj − ⃗ri = (l, m, n)

y
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Resonance effect
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✓Resonance enhances rate 
- long coherence time  ↔︎ 
narrower & higher peak 

-  @ 

τ

δ(ω/m − 1) τ → ∞

Resonance

ω
m

4m2τ2

0.999995 1.000000 1.000010 1.000010

1×1012

2×1012

3×1012

4×1012

4/mτ

✓ Upper limit on  determined by 
- cond-mat axion lifetime 
- DM coherence time 

τ

τχ ∼ 1/mχv2
χ


