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Phenomena can not be explained by SM

Matter—antimatter asymmetry
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New macroscopic forces?

J. E. Moody* and Frank Wilczek
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 17 January 1984)

Y N — Spin can be used to explore interactions mediated by axions.
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Axion and axion like particles, which are important candidates of dark matter, can
mediate exotic spin dependent interactions
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Spin-dependent macroscopic forces from new particle
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Experimental searches
for exotic spin-dependent interactions
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Constraints set by atomic magnetometer,  Force range is limited by the size of the
SQUID, and torsion balance. sensor of magnetometer.

How to search for exotic interactions with shorter force range?




Using single electron spin quantum sensors to

earchmg for exotic sem Interactions

Objective ¥ S (NV)

— v Atomic scale

v" Near surface
advantages __

]- =) Shorter force range

v" Precise quantum control === Good sensitivity

v NV +AFM =) Cancel unwanted signals

Xing Rong et al., Nature Communications 9, 739 (2018)



Single electron spin guantum sensors
NV- centers in diamond




Preparing NV center guantum sensors

Near surface NV center (about 5-10 nm) were prepared by low energy (5
keV) nitrogen ion implantation.
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Using ion beam etching to form micro-lens and other structures, so as to realize
high-efficiency fluorescence collection ability
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Single electron spin quantum sensors

H=D-S}+E- (S} —S)—yB-S+S- 241

Temperature

Electric-field
stress detection

—

Magnetic
field

Spin-coupling
Spin-sensing

=

Magnetic field sensitivity (per Hz''?)

109,

1pT inT T imT
10 pm
® |squp N Conventional
\sensors > l\ NMR sensors
$ 0005 cele® ® \\ (from| 1944)
c  1um |
S |
® Sty \.\
% ﬁf% \ L] [ ]
2 ‘ ON ® (2002)]
a LS5 f Force sensors Y 108
% 100 nm%’ ‘ T _‘0~> / He
N [ ] /
é.L “"fb 8, \
3 w o (2008) /
8 N (2004) °
& AN NV /10,
3. sensors\ /
10 nm 1 \“»..‘ \ + Magnetic moment
“ /' sensitivity (per Hz'2)
\ @) AR
~®0 !
~(2018)
(2014) \
L./
1 nm

\_ Nat. Nanotechnol. 3, 643(2008)

Scanning diamond
platform

MW coil

Nat. Phys. 9, 215 (2013)

Diamond nanoscale magnetometry

Excitation laser

x '5“”:’-';:1 .

2 Target spins

11 )




Searching for exotic spin dependent interaction

with single electron spin guantum sensors
|

Spin-mass Static spin-spin Velocity-dependent
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NV-AFM platform
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A series of signal sources such as silica, pentacene molecule, dysprosium iron
garnet (DYI1G) can be loaded on the cantilever beam of AFM.
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Experimental results

solid-state-spin quantum sensors to search for physics
beyond the standard model

tuning fork
Single electron spin quantum sensors ?
1. Nat. Commun. 9, 739 (2018) nucleomn source

2. PRL 121, 080402 (2018)
3. PRL 127,010501 (2021)
Ensemble quantum sensor

1. arXiv: 2201.04408 (2022) ﬁ

~ diamond & NV center
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1. Spin-mass Interaction

2m r2 dr
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Xing Rong et al., Nature Communications, 9:739 (2018)

ARTICLE
Searching for an exotic spin-dependent interaction
with a single electron-spin quantum sensor

Xing Rong® 23, Menggi Wang'23, Jianpei Geng'<, Xi Qin'%3, Maosen Guo'3, Man lJiao'3, Yijin Xie'3,
Pengfei Wang"23, Pu Huang?3, Fazhan Shi23, Yi-Fu Cai*®, Chongwen Zou® & Jiangfeng Du'-23




Experimental setup
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Experimental result
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Table 1: Systematic error summary.

Systematic error

Size of effect

Correction to g g5 for 20 um

S

diamagnetism of M

diamagnetism of the tuning fork
phase jitter of microwave

T dephasing

shortest distance between M and S
the amplitude of the modulation of M
the radius of M

the angle between B.; and NV axis

—11.28 x 107°
—11.28 x 107°
1.3 ps
670 £41 ns
0.5+ 0.1 gm
41.1 4+ 0.1 nm
250 4+ 2.5 um

H4.7 £ 3°

(5+5) x 1072
(3.8 4+ 0.3) x 10720
(0.0 £ 1.7) x 10727
(0.0 £ 1.9) x 10727
(0.1 £3.0) x 10717
(0.0 £ 1.3) x 10717
(0.1 4+3.7) x 1071#

(0.44+4.2) x 1071
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Constraints by our experiment
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2. Exotic dipole-dipole interaction

Xing Rong et al., Phys. Rev. Lett. 121, 080402 (2018)

PHYSICAL REVIEW LETTERS 121, 080402 (2018)

Constraints on a Spin-Dependent Exotic Interaction between Electrons with Single
Electron Spin Quantum Sensors

E 'riﬂl'l}"l.l Xit‘l._‘..‘- Fazhan S]’Ii..l':"*
3.3

Xing Rong."* Man liao," Jlianpei Geng.,"! Bo Zhang,'
- . 123 wpm = -+ 5.6 : o 1.2,
Chang-Kui Duan, Yi-Fu Cai,” " and hangleng Du
lras Kev Laboratory of Microscale Magnetic Resonance and Departiment of Modern Physics,
University of Science and Technology of China, Hefei 230026, China

21



Constraint on exotic interaction between electrons

Magnetic dipole-dipole coupling
B 140 Ye Ve B2

1673
I . _
Ui {3'2

Exotic dipole-dipole coupling ]

3(01 - 7)(02 - 7) — (01 - 02)],

We now experimentally search for this type of exotic dipole-dipole coupling (2.

[1] B. A. Dobrescu and I.Maocioiu, J. High Energy Phys. 11, 005 (2006)
[2] Xing Rong et al., Phys. Rev. Lett. 121, 080402 (2018)




Experiment technique and setup
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T. Xie et al., Phys. Rev. Applied 9, 064003 (2018).
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Experimental pulse sequence
for searching exotic interactions

|
(a) 520-nm laser 532-nm laser rf MW

__——» Prepare the polarized electrons in
pentacene

i /) T /> === Detect polarized
signal by NV

The fitting provides:

% e &
< o %\\ 9594 /4mhe =

(0.04+2.16) x 1017,

15 30 45
d (pum)
Xing Rong et al., Phys. Rev. Lett. 121, 080402 (2018)
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Analysis of the systematic errors

(a) h d . TABLE I. Summary of the systematic errors in our experiment.
1 ‘—l The corrections to g4 ¢% /4rhc at 2 = 500 ym are listed.
- o]
r Systematic error Size of effect Corrections
pentacene Deviation in x-y plane 0£10 um (=0.6 £ 1.3) x 10720
. - 2r, 4¢®= 53>, Distance 12+ 13 um  (1+80)x 1072
S Decoherence of S 405 + 23 ps —55+6) x 1072
Decay time 741 ps —5+36) x 1072
| B, Radius 35+£5 um ( 3+7)x 1072
PMMA— <— Silver Diamond @@= Thickness 15£3 um —9 £+ 45) x 1072
Polarization 4.7+ 0.1% _—l 4 52) x 10722
Total -2.94+6.0) x 10720

Xing Rong et al., Phys. Rev. Lett. 121, 080402 (2018)
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Constraint on exotic interaction
between electrons
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We established upper limits on this type of exotic spin-dependent interaction in the
force range 10 to 900 pm.

Xing Rong et al., Phys. Rev. Lett. 121, 080402 (2018)



3. parity-odd spin- and velocity- dependent interaction

PHYSICAL REVIEW LETTERS 127, 010501 (2021)

Experimental Constraint on an Exotic Parity-Odd Spin- and Velocity-Dependent

Interaction with a Single Electron Spin Quantum Sensor
Man Jiao,"*? Maosen Guo,"*” Xing Rong®,"*>" Yi-Fu Cai®,"” and Jiangfeng Du®"**"
'Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei 230026, China

Man Jiao, et al., Physical Review Letters 127, 010501 (2021).
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Experimental scheme

Pulse sequence is designed to accumulate the
possible velocity dependent effect
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Man Jiao, et al., Physical Review Letters 127, 010501 (2021).
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Experimental scheme

Suppose effective magnetic field is zero

P, and P_ is modulated with the phase factor of microwave ¢, o
(a)

3 W Py = [1+ cos(pmw)]/2
(b) :
o :\/\/\/\/ F o esOml/2

(c) ¢

=P, —P_=0

0 2n 4n 6m Orw

Man Jiao, et al., Physical Review Letters 127, 010501 (2021).
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Experimental scheme

Suppose nonzero magnetic field exist,

P, P.will have by additional phase factor
(a)

0 2 4r 6m

Py = [1 4 cos(dhmy + #)]/2

pP_ = [1 + COS(quW _ ¢)]/2

I = P, — P_ = sin(¢,,) sin(@)

Man Jiao, et al., Physical Review Letters 127, 010501 (2021).
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Experimental result and constraints
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Man Jiao, et al., Physical Review Letters 127, 010501 (2021).
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From Single to Ensemble NV sensor

505/ /

o % ARTton
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Nat. Mater. 8, 383(2009) Nature 555, 351(2018) Phys. Rev. X 5, 041001(2015)
1 1
Y : N: number of electron spin
Y J/NT;
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Ensemble NV sensor in our experiment ﬂ
o
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employed as quantum sensor from 0.4 to 2 kHz
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Search for exotic interactions

with ensemble NV guantum Sensor
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Mr. Liang

Experimental Constraints on Exotic Spin-Dependent Interactions by a Magnetometer
with Ensembles of Nitrogen-Vacancy Centers in Diamond

Hang Liang,'»? Man Jiao,!"? Yue Huang,»? Pei Yu,!? Xiangyu Ye,''? Ya
Wang,!? Yijin Xie,""? Yi-Fu Cai,®* Xing Rong,""% * and Jiangfeng Du® 21
YCAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences,

Unaversity of Science and Technology of China, Hefei 230026, China

Hang Liang et al., arXiv: 2201.04408 (2022)
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Experimental scheme
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Experimental results

Measurement of the effective magnetic fields Systematic errors
(a)
- 10F
=J ) ! . TABLE I. Summary of the systematic errors. The corrections
E | ' to the constraint on ¢g5gi with A = 330 um and g3 g% with
_3 -10f | Tplhaes component] A = 30 pm are listed.
5 Ll Agagy  Agf b
% Parameter Value (x107%%) (x1072h)
= 0 Diamagnetism —1.6x107° +0.3 +2.9
1ok o +2.9
—Quadm[u.rccm:qmcm.] 0 54.7+1.3 —2.8 +0.4
0 GIE} 120 Distance 9.3 £0.5 pm +0.2 +0.4
Time (5) Radius 978 £ 3 pm +0.2 +0.3
{h} (c} Thickness 23+ 1 pum +0.2 fgz
‘x 1054 _ |29L9—hwn:sul1| 2x 108} - Amplitude 718 7 nm f?ﬁ tg?;
HH \ Deviation 0410 pm +0.2 o
< < Phase delay ¢ —32+09° o +0.3
E ax10°t E ax10°} Calib. Const. 2.2940.03 x 10°V/T  +1.2 +0.3
Final +4.3 +3.1
0 0
-15-10 -5 0 5 10 15 -15-10 -5 0O 5 10 15
In-phase component of measured B (nT) Quadrature component of measured B (nT)
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Experimental constraints
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Summary and outlook

>NV centers can be a powerful platform for investigating new physics.

»Experimental search for more types of interactions are been carried out.

» In future, on-chip sensor will be utilized.
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