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How and when are we able to find
a glass phase in a microscopic model

of crystalline solids ?



Introduction




Structural glasses
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Phenomenological “glass transition” at Ty in a laboratory timescale.
Thermodynamic glass transition at Tk ?



Energy landscapes

Emergent exponential # of energy minima, sensitive to quenching/cooling process.
Once we have such landscape, a glass behavior is observed in a laboratory timescale.

depth of
potential wells

energy

crystal

phase space

auto correlation

() = % > i)t

1] .
B-relaxation

various depth of potential wells
lead to streched exponential
of the relaxation time

log t relaxation time



Energy landscapes

Emergent exponential # of energy minima, sensitive to heating/cooling process.

ideal glass

crystal » phase space

- Thermodynamically ergodic, but for laboratory timescale, it is frozen = “glass” : T< Ty
- Tg depends on cooling rate.

Thermodynamic glass transition : Af —<= Break down of ergodicity
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Energy landscapes
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What do we want to know?

- Natural model exhibiting glass transitions.
- Glass transition? = Glassy behavior or thermodynamic glass transition (7c>0)?

model for pyrochlore magnets

Mitsumoto-Hotta-Yoshino

= Jahn-Teller ice model arXiv 2202.05513

Supercooled liguid “a good glass-former”

= Jahn-Teller ice + Heisenberg spin model Mitsumoto-Hotta-Yoshino
Thermodynamic glass transition PRL 124, 087201(2020)

- Quantum glass? What spatial dimension ( d > 3 ) for glass transition?
Hotta-Ueda-Imada (2016~)



Grand challenge for theorists

- Previously, disorder-free lattice models (d<3) could not afford
true glass transition.

- Even with quenched disorder, exhausting effort to establish d=3 SG transition.

Edwards Anderson (EA) model :

, artificial model with ONLY random interactions.
Before our work in 2020.
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Glasses in materials
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Gingras, et al (1997)

- Geometrical frustration exists. ,
But not enough to freeze the spins.!

“I"d3m”

2in-2out Mo-ion lattice displacements
“Ice rule” macroscopic degeneracy



Glasses in materials

Organic Solid 6-ET2X
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Frustration X glass

pyrochlore lattice 2-in-2-out has the lowest energy
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A. P. Ramirez*, A. Hayashit, R. J. Cavaft, R. Siddharthani
& B. S. Shastry:

But this is not a glass.




Supercooled Jahn-Teller ice

a good glass-former

Mitsumoto Hotta Yoshino arXiv 2202.05513



How can we form a glass? or glassy states?

pyrpchlore :

spin ice + longer range interaction spin ice WITH quenched disorder
= slow dynamics = spin glass transition
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Supercooled Jahn-Teller ice

Y2M0207
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Supercooled Jahn-Teller ice
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Usually Jahn-Teller effect lowers the symmetry
of the crystal the same for all atoms.

Here, however, Mo are highly correlated.
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Supercooled Jahn-Teller ice
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The JT energy of Mo depends on infout of the surrounding six Mo ions.
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Monte Carlo simulation
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Monte Carlo simulation
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True glass transition

coupled “frustrated” degrees of freedom

Mitsumoto Hotta Yoshino PRL 124, 087201 (2020)




Thermodynamic glass transition

How can we drive “strong glass” or “frustrated” landscape into
a thermodynamic glass phase ?

Lattice
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Model with true glass transition

H = —3620'7;-0'3' + Z Jai,ajSi'Sj

1] (27
lattice displacements  Heisenberg spins (real spin)
~ Jahn-Teller (¢>0)

uniform lattice + heisenberg spin spin-orbital(lattice) structural glass



Model with true glass transition
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Microscopic description of Y2Mo0207

- Mo-O-Mo angle & will change the sign of superexchange interactions
because tr, changes a lot.
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Characterization of glass
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Monte Carlo simulation
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Monte Carlo simulation
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Summary

How can we realize a true glass transition in a miscroscopic model of solids
without quenched randomness ?

Y>Mo0207 canonical spin glass : 20 years of diffucult problem

thermodynamic glass transition
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