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Assembly of macroscopic particles (0.1mm~ )

Thermal fluctuations are completely negligible = Non equilibrium
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Introduction
Granular matters are ubiquitous in our daily life!
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The jamming transition is a phase transition 
from solid to liquid at zero temperature
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FIG. 5: States of soft frictionless spheres as function of pack-
ing density φ, below, at, and above the critical density φc.
Left: Unjammed system at a density below the critical den-
sity — pressure is zero and there are no contacts. Middle:
Marginally rigid system consisting of undeformed frictionless
spheres just touching. The system is at the jamming tran-
sition (point J), has vanishing pressure, critical density and
2d contacts per particle, where d is the dimension. Right:
Jammed system for finite pressure and density above φc.

tact forces. In this model, temperature, gravity and shear
are set to zero. The beauty of such systems is that they
allow for a precise study of a jamming transition. As we
will see in sections IV and V, caution should be applied
when applying the results for soft frictionless spheres to
frictional and/or non-spherical particles.

From a theoretical point of view, packings of soft fric-
tionless spheres are ideal for three reasons. First, they
exhibit a well defined jamming point: For positive P the
system is jammed, as it exhibits a finite shear modulus
and a finite yield stress [2], while at zero pressure the sys-
tems loses rigidity. Hence, the (un)jamming transition
occurs when the pressure P approaches zero, or, geomet-
rically, when the deformations of the particles vanish.
The zero pressure, zero shear, zero temperature point in
the jamming phase diagram is referred to as “point J”
(Fig. 1e and 5). In this review, point J will only refer
to soft frictionless spheres and not to jamming transi-
tions of other types of particles. Second, at point J the
contact number approaches the so-called isostatic value,
and the system is marginally stable. The system’s me-
chanical and geometrical properties are rich and peculiar
here. For large systems the critical packing density, φc,
approaches values usually associated with random close
packing. Third, the mechanical and geometrical proper-
ties of jammed systems at finite pressure, or equivalently,
φ − φc > 0, exhibit non-trivial power law scalings as a
function ∆φ := φ − φc or, similarly, as function of the
pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section III A by a brief discussion of a few common con-
tact laws and various numerical protocols used to gener-
ate jammed packings. We then present evidence that the
jamming transition of frictionless spheres is sharp and
discuss the relevant control parameters in section III B.

In section III C we discuss the special geometrical fea-
tures of systems at point J, as probed by the contact
number and pair correlation function. Away from point
J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation func-
tion at point J, as discussed in section III D. Many fea-
tures of systems near point J can be probed in linear re-
sponse, and these are discussed at length in section III E
— these include the density of states (III E 1), diverging
length and time scales (III E 2), elastic moduli (III E 3)
and non-affine displacements (III E 4). We close this sec-
tion by a comparison of effective medium theory, rigidity
percolation and jamming, highlighting the unique nature
of jamming near point J (III E 5).

A. Definition of the Model

At the (un)jamming transition soft particles are un-
deformed, and the distance to jamming depends on the
amount of deformation. Rigid particles are therefore al-
ways at the jamming transition, and soft particles are
necessary to vary the distance to point J. Deformable fric-
tionless spheres interact through purely repulsive body
centered forces, which can be written as a function of
the amount of virtual overlap between two particles in
contact. Denoting the radii of particles in contact as Ri

and Rj and the center-to-center distance as rij , it is con-
venient to define a dimensionless overlap parameter δij

as

δij := 1 −
rij

Ri + Rj
, (1)

so that particles are in contact only if δij ≥ 0. We limit
ourselves here to interaction potentials of the form:

Vij = εij δα
ij δij ≥ 0 , (2)

Vij = 0 δij ≤ 0 . (3)

By varying the exponent, α, one can probe the nature and
robustness of the various scaling laws discussed below.
For harmonic interactions, α = 2 and εij sets the spring
constant of the contacts. Hertzian interactions between
three-dimensional spheres, where contacts are stiffer as
they are more compressed, correspond to α = 5/2 [91].
O’Hern et al have also studied the “Hernian” interaction
(α = 3/2), which corresponds to contacts that become
progressively weaker when compressed [2].

Once the contact laws are given, one can generate pack-
ings by various different protocols, of which MD (Molec-
ular Dynamics) [20, 21, 22, 24] and conjugate gradient [2]
are the most commonly used [92]. In MD simulations one
typically starts simulations with a loose gas of particles,
which are incrementally compressed, either by shrinking
their container or by inflating their radii. Supplement-
ing the contact laws with dissipation (inelastic collisions,
viscous drag with a virtual background fluid, etc) the
systems “cools” and eventually one obtains a stationary
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To simplify the problem, we consider spherical particles



For frictionless spherical particle

The jamming occurs at

©          Nature Publishing Group1960

metallic balls hard spheres 

(simulation)

Mables

'J ⇠ 0.64
<latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="8JPYBhBrnEbb4/Y+c3nSu7k0q5Y=">AAAB8nicbZBPS8MwGMbfzn9zTq3izUtwCJ5KKqIeBS/iaYL7A2spaZZuYWlaknQwy/CrePGgiB/Gm9/GdttBNx8I/HiehPfNE6aCa4Pxt1VZW9/Y3Kpu13bqu3v79kG9rZNMUdaiiUhUNySaCS5Zy3AjWDdVjMShYJ1wdFvmnTFTmify0UxS5sdkIHnEKTGFFdhH3piodMiDe+RpHiPsXF7UAruBHTwTWgV3AQ1YqBnYX14/oVnMpKGCaN1zcWr8nCjDqWDTmpdplhI6IgPWK1CSmGk/n20/RaeF00dRooojDZq5v1/kJNZ6EofFzZiYoV7OSvO/rJeZ6NrPuUwzwySdD4oygUyCyipQnytGjZgUQKjixa6IDoki1BSFlSW4y19ehfa542LHfcBQhWM4gTNw4Qpu4A6a0AIKT/ACb/BuPVuv1se8roq16O0Q/sj6/AHUq5JR</latexit><latexit sha1_base64="8JPYBhBrnEbb4/Y+c3nSu7k0q5Y=">AAAB8nicbZBPS8MwGMbfzn9zTq3izUtwCJ5KKqIeBS/iaYL7A2spaZZuYWlaknQwy/CrePGgiB/Gm9/GdttBNx8I/HiehPfNE6aCa4Pxt1VZW9/Y3Kpu13bqu3v79kG9rZNMUdaiiUhUNySaCS5Zy3AjWDdVjMShYJ1wdFvmnTFTmify0UxS5sdkIHnEKTGFFdhH3piodMiDe+RpHiPsXF7UAruBHTwTWgV3AQ1YqBnYX14/oVnMpKGCaN1zcWr8nCjDqWDTmpdplhI6IgPWK1CSmGk/n20/RaeF00dRooojDZq5v1/kJNZ6EofFzZiYoV7OSvO/rJeZ6NrPuUwzwySdD4oygUyCyipQnytGjZgUQKjixa6IDoki1BSFlSW4y19ehfa542LHfcBQhWM4gTNw4Qpu4A6a0AIKT/ACb/BuPVuv1se8roq16O0Q/sj6/AHUq5JR</latexit><latexit sha1_base64="JOEinNcCIRgmtELgIkcITQhDbms=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwFSYi6rLoRlxVsA9oQphMJ+3QySTMTAo1FH/FjQtF3Pof7vwbJ20W2nrgwuGce7n3njDlTGmEvq2l5ZXVtfXKRnVza3tn197bb6kkk4Q2ScIT2QmxopwJ2tRMc9pJJcVxyGk7HN4UfntEpWKJeNDjlPox7gsWMYK1kQL70BthmQ5YcAc9xWKInIvzamDXkIOmgIvELUkNlGgE9pfXS0gWU6EJx0p1XZRqP8dSM8LppOpliqaYDHGfdg0VOKbKz6fXT+CJUXowSqQpoeFU/T2R41ipcRyazhjrgZr3CvE/r5vp6MrPmUgzTQWZLYoyDnUCiyhgj0lKNB8bgolk5lZIBlhiok1gRQju/MuLpHXmuMhx71Gtfl3GUQFH4BicAhdcgjq4BQ3QBAQ8gmfwCt6sJ+vFerc+Zq1LVjlzAP7A+vwBLnmTtQ==</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit><latexit sha1_base64="X0RF4dXB+pgjDdXCFs/bHkGmiJk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIUZdFN+Kqgn1AE8JkOmmHzkzCzKRQS/FX3LhQxK3/4c6/cdJmoa0HLhzOuZd774lSRpV23W+rtLK6tr5R3qxsbe/s7tn7By2VZBKTJk5YIjsRUoRRQZqaakY6qSSIR4y0o+FN7rdHRCqaiAc9TknAUV/QmGKkjRTaR/4IyXRAwzvoK8qh61zUKqFddR13BrhMvIJUQYFGaH/5vQRnnAiNGVKq67mpDiZIaooZmVb8TJEU4SHqk66hAnGigsns+ik8NUoPxok0JTScqb8nJogrNeaR6eRID9Sil4v/ed1Mx1fBhIo000Tg+aI4Y1AnMI8C9qgkWLOxIQhLam6FeIAkwtoElofgLb68TFrnjuc63n2tWr8u4iiDY3ACzoAHLkEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWklXMHII/sD5/AC+5k7k=</latexit>

Spherical particles
Motivation



Spherical particles
Contact number

# of constraints > # of degree of freedom

# of constraints = # of contacts = Nz/2

 # of degree of freedom = Nd

Transition may occur at zJ = 2d
<latexit sha1_base64="K4oRVnN9CjkoTPTV7IyOzdcWPzw=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9ktgnoQil7EUwXXVtqlZLNpG5pklyQr1KW/wosHFa/+HW/+G9N2D9r6YODx3gwz88KEM21c99spLC2vrK4V10sbm1vbO+XdvXsdp4pQn8Q8Vq0Qa8qZpL5hhtNWoigWIafNcHg18ZuPVGkWyzszSmggcF+yHiPYWOnhqXuDLlAtQt1yxa26U6BF4uWkAjka3fJXJ4pJKqg0hGOt256bmCDDyjDC6bjUSTVNMBniPm1bKrGgOsimB4/RkVUi1IuVLWnQVP09kWGh9UiEtlNgM9Dz3kT8z2unpncWZEwmqaGSzBb1Uo5MjCbfo4gpSgwfWYKJYvZWRAZYYWJsRiUbgjf/8iLxa9Xzqnd7Uqlf5mkU4QAO4Rg8OIU6XEMDfCAg4Ble4c1Rzovz7nzMWgtOPrMPf+B8/gBZpo7+</latexit><latexit sha1_base64="K4oRVnN9CjkoTPTV7IyOzdcWPzw=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9ktgnoQil7EUwXXVtqlZLNpG5pklyQr1KW/wosHFa/+HW/+G9N2D9r6YODx3gwz88KEM21c99spLC2vrK4V10sbm1vbO+XdvXsdp4pQn8Q8Vq0Qa8qZpL5hhtNWoigWIafNcHg18ZuPVGkWyzszSmggcF+yHiPYWOnhqXuDLlAtQt1yxa26U6BF4uWkAjka3fJXJ4pJKqg0hGOt256bmCDDyjDC6bjUSTVNMBniPm1bKrGgOsimB4/RkVUi1IuVLWnQVP09kWGh9UiEtlNgM9Dz3kT8z2unpncWZEwmqaGSzBb1Uo5MjCbfo4gpSgwfWYKJYvZWRAZYYWJsRiUbgjf/8iLxa9Xzqnd7Uqlf5mkU4QAO4Rg8OIU6XEMDfCAg4Ble4c1Rzovz7nzMWgtOPrMPf+B8/gBZpo7+</latexit><latexit sha1_base64="K4oRVnN9CjkoTPTV7IyOzdcWPzw=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9ktgnoQil7EUwXXVtqlZLNpG5pklyQr1KW/wosHFa/+HW/+G9N2D9r6YODx3gwz88KEM21c99spLC2vrK4V10sbm1vbO+XdvXsdp4pQn8Q8Vq0Qa8qZpL5hhtNWoigWIafNcHg18ZuPVGkWyzszSmggcF+yHiPYWOnhqXuDLlAtQt1yxa26U6BF4uWkAjka3fJXJ4pJKqg0hGOt256bmCDDyjDC6bjUSTVNMBniPm1bKrGgOsimB4/RkVUi1IuVLWnQVP09kWGh9UiEtlNgM9Dz3kT8z2unpncWZEwmqaGSzBb1Uo5MjCbfo4gpSgwfWYKJYvZWRAZYYWJsRiUbgjf/8iLxa9Xzqnd7Uqlf5mkU4QAO4Rg8OIU6XEMDfCAg4Ble4c1Rzovz7nzMWgtOPrMPf+B8/gBZpo7+</latexit><latexit sha1_base64="K4oRVnN9CjkoTPTV7IyOzdcWPzw=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9ktgnoQil7EUwXXVtqlZLNpG5pklyQr1KW/wosHFa/+HW/+G9N2D9r6YODx3gwz88KEM21c99spLC2vrK4V10sbm1vbO+XdvXsdp4pQn8Q8Vq0Qa8qZpL5hhtNWoigWIafNcHg18ZuPVGkWyzszSmggcF+yHiPYWOnhqXuDLlAtQt1yxa26U6BF4uWkAjka3fJXJ4pJKqg0hGOt256bmCDDyjDC6bjUSTVNMBniPm1bKrGgOsimB4/RkVUi1IuVLWnQVP09kWGh9UiEtlNgM9Dz3kT8z2unpncWZEwmqaGSzBb1Uo5MjCbfo4gpSgwfWYKJYvZWRAZYYWJsRiUbgjf/8iLxa9Xzqnd7Uqlf5mkU4QAO4Rg8OIU6XEMDfCAg4Ble4c1Rzovz7nzMWgtOPrMPf+B8/gBZpo7+</latexit>

z > 2d
<latexit sha1_base64="bX+hiKvapBl0/FDJKJKWSkg17mI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoF6k6MVjBWMLbSibzaZdutksuxuhhv4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMCyVn2rjut1NaWV1b3yhvVra2d3b3qvsHDzrNFKE+SXmqOiHWlDNBfcMMpx2pKE5CTtvh6Gbqtx+p0iwV92YsaZDggWAxI9hYqf2ErlAjQv1qza27M6Bl4hWkBgVa/epXL0pJllBhCMdadz1XmiDHyjDC6aTSyzSVmIzwgHYtFTihOshn507QiVUiFKfKljBopv6eyHGi9TgJbWeCzVAvelPxP6+bmfgiyJmQmaGCzBfFGUcmRdPfUcQUJYaPLcFEMXsrIkOsMDE2oYoNwVt8eZn4jfpl3bs7qzWvizTKcATHcAoenEMTbqEFPhAYwTO8wpsjnRfn3fmYt5acYuYQ/sD5/AEMeo5C</latexit><latexit sha1_base64="bX+hiKvapBl0/FDJKJKWSkg17mI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoF6k6MVjBWMLbSibzaZdutksuxuhhv4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMCyVn2rjut1NaWV1b3yhvVra2d3b3qvsHDzrNFKE+SXmqOiHWlDNBfcMMpx2pKE5CTtvh6Gbqtx+p0iwV92YsaZDggWAxI9hYqf2ErlAjQv1qza27M6Bl4hWkBgVa/epXL0pJllBhCMdadz1XmiDHyjDC6aTSyzSVmIzwgHYtFTihOshn507QiVUiFKfKljBopv6eyHGi9TgJbWeCzVAvelPxP6+bmfgiyJmQmaGCzBfFGUcmRdPfUcQUJYaPLcFEMXsrIkOsMDE2oYoNwVt8eZn4jfpl3bs7qzWvizTKcATHcAoenEMTbqEFPhAYwTO8wpsjnRfn3fmYt5acYuYQ/sD5/AEMeo5C</latexit><latexit sha1_base64="bX+hiKvapBl0/FDJKJKWSkg17mI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoF6k6MVjBWMLbSibzaZdutksuxuhhv4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMCyVn2rjut1NaWV1b3yhvVra2d3b3qvsHDzrNFKE+SXmqOiHWlDNBfcMMpx2pKE5CTtvh6Gbqtx+p0iwV92YsaZDggWAxI9hYqf2ErlAjQv1qza27M6Bl4hWkBgVa/epXL0pJllBhCMdadz1XmiDHyjDC6aTSyzSVmIzwgHYtFTihOshn507QiVUiFKfKljBopv6eyHGi9TgJbWeCzVAvelPxP6+bmfgiyJmQmaGCzBfFGUcmRdPfUcQUJYaPLcFEMXsrIkOsMDE2oYoNwVt8eZn4jfpl3bs7qzWvizTKcATHcAoenEMTbqEFPhAYwTO8wpsjnRfn3fmYt5acYuYQ/sD5/AEMeo5C</latexit><latexit sha1_base64="bX+hiKvapBl0/FDJKJKWSkg17mI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoF6k6MVjBWMLbSibzaZdutksuxuhhv4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMCyVn2rjut1NaWV1b3yhvVra2d3b3qvsHDzrNFKE+SXmqOiHWlDNBfcMMpx2pKE5CTtvh6Gbqtx+p0iwV92YsaZDggWAxI9hYqf2ErlAjQv1qza27M6Bl4hWkBgVa/epXL0pJllBhCMdadz1XmiDHyjDC6aTSyzSVmIzwgHYtFTihOshn507QiVUiFKfKljBopv6eyHGi9TgJbWeCzVAvelPxP6+bmfgiyJmQmaGCzBfFGUcmRdPfUcQUJYaPLcFEMXsrIkOsMDE2oYoNwVt8eZn4jfpl3bs7qzWvizTKcATHcAoenEMTbqEFPhAYwTO8wpsjnRfn3fmYt5acYuYQ/sD5/AEMeo5C</latexit>

J. C. Maxwell

1831-1879

Simple stability argument by Maxwell

N: # of particles

z: # of contacts per particle

d: spatial dimensions 



japan paint

J. Bernal and J. Mason (1960)

1. Compress 2. Put Japan paint 
(Urushi)

3. Remove Japan paint

Spherical particles
Contact number

Experiment
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2z
<latexit sha1_base64="udHx3EYpxsvlOzhrhlIz8GVVnmY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J0It/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GN5nffuTaiFg94CThfkSHSoSCUbTSfe2p1C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9KdUo2CSz0q91PCEsjEd8q6likbc+NP5qTNyZpUBCWNtSyGZq78npjQyZhIFtjOiODLLXib+53VTDK/8qVBJilyxxaIwlQRjkv1NBkJzhnJiCWVa2FsJG1FNGdp0shC85ZdXSatW9dyqd3dRqV/ncRThBE7hHDy4hDrcQgOawGAIz/AKb450Xpx352PRWnDymWP4A+fzB47ojU4=</latexit><latexit sha1_base64="udHx3EYpxsvlOzhrhlIz8GVVnmY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J0It/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GN5nffuTaiFg94CThfkSHSoSCUbTSfe2p1C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9KdUo2CSz0q91PCEsjEd8q6likbc+NP5qTNyZpUBCWNtSyGZq78npjQyZhIFtjOiODLLXib+53VTDK/8qVBJilyxxaIwlQRjkv1NBkJzhnJiCWVa2FsJG1FNGdp0shC85ZdXSatW9dyqd3dRqV/ncRThBE7hHDy4hDrcQgOawGAIz/AKb450Xpx352PRWnDymWP4A+fzB47ojU4=</latexit><latexit sha1_base64="udHx3EYpxsvlOzhrhlIz8GVVnmY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J0It/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GN5nffuTaiFg94CThfkSHSoSCUbTSfe2p1C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9KdUo2CSz0q91PCEsjEd8q6likbc+NP5qTNyZpUBCWNtSyGZq78npjQyZhIFtjOiODLLXib+53VTDK/8qVBJilyxxaIwlQRjkv1NBkJzhnJiCWVa2FsJG1FNGdp0shC85ZdXSatW9dyqd3dRqV/ncRThBE7hHDy4hDrcQgOawGAIz/AKb450Xpx352PRWnDymWP4A+fzB47ojU4=</latexit><latexit sha1_base64="udHx3EYpxsvlOzhrhlIz8GVVnmY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J0It/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GN5nffuTaiFg94CThfkSHSoSCUbTSfe2p1C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9KdUo2CSz0q91PCEsjEd8q6likbc+NP5qTNyZpUBCWNtSyGZq78npjQyZhIFtjOiODLLXib+53VTDK/8qVBJilyxxaIwlQRjkv1NBkJzhnJiCWVa2FsJG1FNGdp0shC85ZdXSatW9dyqd3dRqV/ncRThBE7hHDy4hDrcQgOawGAIz/AKb450Xpx352PRWnDymWP4A+fzB47ojU4=</latexit>

2z = 4d = 12
<latexit sha1_base64="14lZIz+ADT4VyvXvbO4nNb+vgh8=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSloBuh6MZlBfuANpTJZNIOnUzSmUmhhn6HGxeKuPVj3Pk3TtostPXAvRzOuZe5c7yYM6Vt+9sqbGxube8Ud0t7+weHR+Xjk7aKEkloi0Q8kl0PK8qZoC3NNKfdWFIcepx2vPFd5nemVCoWiUc9i6kb4qFgASNYG8mtPaEbVPdNc2qlQbliV+0F0DpxclKBHM1B+avvRyQJqdCEY6V6jh1rN8VSM8LpvNRPFI0xGeMh7RkqcEiVmy6OnqMLo/goiKQpodFC/b2R4lCpWeiZyRDrkVr1MvE/r5fo4NpNmYgTTQVZPhQkHOkIZQkgn0lKNJ8Zgolk5lZERlhiok1OWQjO6pfXSbtWdeyq81CvNG7zOIpwBudwCQ5cQQPuoQktIDCBZ3iFN2tqvVjv1sdytGDlO6fwB9bnDwlaj6c=</latexit><latexit sha1_base64="14lZIz+ADT4VyvXvbO4nNb+vgh8=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSloBuh6MZlBfuANpTJZNIOnUzSmUmhhn6HGxeKuPVj3Pk3TtostPXAvRzOuZe5c7yYM6Vt+9sqbGxube8Ud0t7+weHR+Xjk7aKEkloi0Q8kl0PK8qZoC3NNKfdWFIcepx2vPFd5nemVCoWiUc9i6kb4qFgASNYG8mtPaEbVPdNc2qlQbliV+0F0DpxclKBHM1B+avvRyQJqdCEY6V6jh1rN8VSM8LpvNRPFI0xGeMh7RkqcEiVmy6OnqMLo/goiKQpodFC/b2R4lCpWeiZyRDrkVr1MvE/r5fo4NpNmYgTTQVZPhQkHOkIZQkgn0lKNJ8Zgolk5lZERlhiok1OWQjO6pfXSbtWdeyq81CvNG7zOIpwBudwCQ5cQQPuoQktIDCBZ3iFN2tqvVjv1sdytGDlO6fwB9bnDwlaj6c=</latexit><latexit sha1_base64="14lZIz+ADT4VyvXvbO4nNb+vgh8=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSloBuh6MZlBfuANpTJZNIOnUzSmUmhhn6HGxeKuPVj3Pk3TtostPXAvRzOuZe5c7yYM6Vt+9sqbGxube8Ud0t7+weHR+Xjk7aKEkloi0Q8kl0PK8qZoC3NNKfdWFIcepx2vPFd5nemVCoWiUc9i6kb4qFgASNYG8mtPaEbVPdNc2qlQbliV+0F0DpxclKBHM1B+avvRyQJqdCEY6V6jh1rN8VSM8LpvNRPFI0xGeMh7RkqcEiVmy6OnqMLo/goiKQpodFC/b2R4lCpWeiZyRDrkVr1MvE/r5fo4NpNmYgTTQVZPhQkHOkIZQkgn0lKNJ8Zgolk5lZERlhiok1OWQjO6pfXSbtWdeyq81CvNG7zOIpwBudwCQ5cQQPuoQktIDCBZ3iFN2tqvVjv1sdytGDlO6fwB9bnDwlaj6c=</latexit><latexit sha1_base64="14lZIz+ADT4VyvXvbO4nNb+vgh8=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSloBuh6MZlBfuANpTJZNIOnUzSmUmhhn6HGxeKuPVj3Pk3TtostPXAvRzOuZe5c7yYM6Vt+9sqbGxube8Ud0t7+weHR+Xjk7aKEkloi0Q8kl0PK8qZoC3NNKfdWFIcepx2vPFd5nemVCoWiUc9i6kb4qFgASNYG8mtPaEbVPdNc2qlQbliV+0F0DpxclKBHM1B+avvRyQJqdCEY6V6jh1rN8VSM8LpvNRPFI0xGeMh7RkqcEiVmy6OnqMLo/goiKQpodFC/b2R4lCpWeiZyRDrkVr1MvE/r5fo4NpNmYgTTQVZPhQkHOkIZQkgn0lKNJ8Zgolk5lZERlhiok1OWQjO6pfXSbtWdeyq81CvNG7zOIpwBudwCQ5cQQPuoQktIDCBZ3iFN2tqvVjv1sdytGDlO6fwB9bnDwlaj6c=</latexit>
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N= 500

metallic balls painted

with black japan paint

©          Nature Publishing Group1960

J. Bernal and J. Mason (1960)

Spherical particles
Contact number



xi
<latexit sha1_base64="AVmfx+YeFaOOyFtkiB8CIxCujYQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWNFYwttKJvtpl262YTdiVhCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/sPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4PfGbj1wbkah7HKU8iGlfiUgwila6e+qKbqXq1twpyCLxClKFAo1u5avTS1gWc4VMUmPanptikFONgkk+Lncyw1PKhrTP25YqGnMT5NNTx+TYKj0SJdqWQjJVf0/kNDZmFIe2M6Y4MPPeRPzPa2cYXQS5UGmGXLHZoiiTBBMy+Zv0hOYM5cgSyrSwtxI2oJoytOmUbQje/MuLxD+tXda827Nq/apIowSHcAQn4ME51OEGGuADgz48wyu8OdJ5cd6dj1nrklPMHMAfOJ8/zh2NrA==</latexit><latexit sha1_base64="AVmfx+YeFaOOyFtkiB8CIxCujYQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWNFYwttKJvtpl262YTdiVhCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/sPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4PfGbj1wbkah7HKU8iGlfiUgwila6e+qKbqXq1twpyCLxClKFAo1u5avTS1gWc4VMUmPanptikFONgkk+Lncyw1PKhrTP25YqGnMT5NNTx+TYKj0SJdqWQjJVf0/kNDZmFIe2M6Y4MPPeRPzPa2cYXQS5UGmGXLHZoiiTBBMy+Zv0hOYM5cgSyrSwtxI2oJoytOmUbQje/MuLxD+tXda827Nq/apIowSHcAQn4ME51OEGGuADgz48wyu8OdJ5cd6dj1nrklPMHMAfOJ8/zh2NrA==</latexit><latexit sha1_base64="AVmfx+YeFaOOyFtkiB8CIxCujYQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWNFYwttKJvtpl262YTdiVhCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/sPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4PfGbj1wbkah7HKU8iGlfiUgwila6e+qKbqXq1twpyCLxClKFAo1u5avTS1gWc4VMUmPanptikFONgkk+Lncyw1PKhrTP25YqGnMT5NNTx+TYKj0SJdqWQjJVf0/kNDZmFIe2M6Y4MPPeRPzPa2cYXQS5UGmGXLHZoiiTBBMy+Zv0hOYM5cgSyrSwtxI2oJoytOmUbQje/MuLxD+tXda827Nq/apIowSHcAQn4ME51OEGGuADgz48wyu8OdJ5cd6dj1nrklPMHMAfOJ8/zh2NrA==</latexit><latexit sha1_base64="AVmfx+YeFaOOyFtkiB8CIxCujYQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWNFYwttKJvtpl262YTdiVhCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/sPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4PfGbj1wbkah7HKU8iGlfiUgwila6e+qKbqXq1twpyCLxClKFAo1u5avTS1gWc4VMUmPanptikFONgkk+Lncyw1PKhrTP25YqGnMT5NNTx+TYKj0SJdqWQjJVf0/kNDZmFIe2M6Y4MPPeRPzPa2cYXQS5UGmGXLHZoiiTBBMy+Zv0hOYM5cgSyrSwtxI2oJoytOmUbQje/MuLxD+tXda827Nq/apIowSHcAQn4ME51OEGGuADgz48wyu8OdJ5cd6dj1nrklPMHMAfOJ8/zh2NrA==</latexit>

xj
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Wet foams

2. Jamming, disorder and non-affinity

The gas fraction f clearly plays a crucial role in determining
foam's structure and rigidity, and some of the earliest studies
that consider the loss of rigidity in disordered media—what we
now call unjamming—concern foams and emulsions with
increasing wetness.8–10 The (un)jamming scenario for foams is
illustrated in Fig. 1. When the gas fraction approaches unity, the
foam is called dry. Macroscopic deformations of such foams
cause stretching of the liquid lms that provide restoring
forces—dry foams are jammed. When the gas fraction is low-
ered and the foam becomes wetter, the gas bubbles become
increasingly spherical, and the foam loses rigidity for some
critical gas fraction fc where the bubbles lose contact (Fig. 1).
The unjamming transition is thus governed by the gas fraction,
which typically is seen as a material parameter. For emulsions
essentially the same scenario arises.11

As the interactions between bubbles are dominantly repul-
sive and viscous, static foams are similar to packings of fric-
tionless so spheres—precisely the models studied extensively
in jamming.7 In real foams, gravity (which causes drainage) and
gas diffusion (which causes coarsening) play a role, although
these effects can be minimized by studying quasi-2D foams and
using inert gases.12

Disordered geometry

How crucial is disorder? In ordered, “crystalline” foams such as
two-dimensional hexagonal packings of monodisperse bubbles
(“liquid honeycombs”8,10), global deformations translate into a
homogeneous local deformation eld, as all the cells deform
equally. In this case the bubbles lose contact at the critical

density fc equal to
p

2
ffiffiffi
3

p z 0:9069, and the average number of

contacting neighbors per bubble, z, remains constant at 6 in the
jammed regime. Similar results can be obtained for three-
dimensional ordered foams, where fc is given by the packing

density of the HCP lattice
p

3
ffiffiffi
2

p z 0:7405.

Disordered foams are, however, very different. Experiments
and simulations clearly nd that the critical packing fraction is
substantially lower, around 84% in 2D and 64% in 3D.11,13–15

Moreover, simulations have revealed that the contact number
varies smoothly with the packing fraction:6,7,13,14 in 2D, the
contact number in foams ranges from 6 in the dry limit and
reaches themarginal, or isostatic value, zc ¼ 4 at the unjamming
point—in addition, the excess coordination z " zc grows as a
square root with f " fc.

These numerical predictions have recently been conrmed
in experiments on disordered monolayers of bubbles oating
on the surface of a soapy solution and bound on the top by a
well-leveled glass plate.16–21 The average contact number z and
the packing fraction can then be determined by image analysis.
As shown in Fig. 2, the contact number tends to z ¼ 6 for high
packing fractions,12 whereas the average contact number
decreases as a square root, ultimately reaching zc ¼ 4 when
the (2D) packing fraction is reduced to a critical value around
f ¼ 0.84.

Moreover, the variation of z with f is similar to a square
root and can be tted well by a power law t of the form

Fig. 2 Average contact number versus f for experimental bidisperse foams: grey
dots indicate data for each individual realization and black circles indicate aver-
ages for each globally set packing fraction. The solid red line is a squareroot fit to
the data (see the text). The inset shows the data plotted versus the experimentally
determined packing fraction fexp. The fit has a power law exponent of 0.70. Data
from the work of Katgert et al.19

Fig. 1 Topview of 2D foams, consisting of a mix of 2 and 3 mm bubbles trapped
below a top plate. At low packing fractions (left), the bubbles do not form
contacts and the materials are in a mechanical vacuum state. At high packing
fractions (right), the bubbles are squeezed together and form a jammed, rigid
state. At intermediate packing fractions, the bubbles just touch and form a
marginal state.

Martin van Hecke is Professor of
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FIG. 6: The pair correlation function g(r > 1) of a three-
dimensional system of monodisperse spheres of radius 1, il-
lustrates the abundance of near contacts close to jamming
(∆φ = 10−8 here). From [42] — Copyright by the American
Physical Society.

isostatic value ziso: for frictionless spheres, ziso = 2d.
Second, at point J, since the particles are undeformed:

the distance between contacting particles has to be pre-
cisely equal to the sum of their radii. This yields Nz/2
constraints for the dN positional degrees of freedom:
therefore, one only expects generic solutions at jamming
when z ≤ 2d.

Combining these two inequalities then yields that the
contact number zc at the jamming point for soft fric-
tionless disks generically will attain the isostatic value:
zc = ziso = 2d [2, 44, 45]. As we will see below, such
counting arguments should be regarded with caution,
since they do not provide a correct estimate for the con-
tact number at jamming of frictionless ellipsoidal parti-
cles [48, 49, 50].

Numerically, it is far from trivial to obtain convincing
evidence for the approach of the contact number to the
isostatic value. Apart from corrections due to finite sys-
tem sizes and finite pressures, a subtle issue is how to
deal with rattlers, particles that do not have any con-
tacts with substantial forces, but still arise in a typical
simulation. These particles have low coordination num-
ber and their overlap with other particles is set by the
numerical precision — these particles do not contribute
to rigidity. For low pressures, they can easily make up
5% of the particles. An accurate estimate of the contact
number than requires one to ignore these particles and
the corresponding “numerical” contacts [2, 70].

Pair Correlation Function — In simulations of
monodisperse spheres in three dimensions, it was found
that near jamming g(r) diverges when r ↓ 1 (for particles
of radius 1):

g(r) ∼
1√

r − 1
. (4)

This expresses that at jamming a singularly large number

FIG. 7: (a) Excess contact number z − zc as function of ex-
cess density φ − φc. Upper curves: represent monodisperse
and bidisperse packings of 512 soft spheres in three dimen-
sions with various interaction potentials, while lower curves
correspond to bidisperse packings of 1024 soft discs in two
dimensions. The straight lines have slope 0.5. From [2] —
Copyright by the American Physical Society. (b) Schematic
contact number as function of density, illustrating the mixed
nature of the jamming transition for frictionless soft spheres.

of particles are on the verge of making contact (Fig. 6)
[42, 46]. This divergence has also been seen in pure hard
sphere packings [47]. In addition to this divergence, g(r)
exhibits a delta peak at r = 1 corresponding to the dN/2
contacting pairs of particles.

In simulations of two-dimensional bidisperse systems, a
similar divergence can be observed, provided one studies
g(ξ), where the rescaled interparticle distance ξ is defined
as r/(Ri +Rj), and where Ri and Rj are the radii of the
undeformed particles in contact [51].

D. Relating Contact Numbers and Packing
Densities away from J

Below jamming, there are no load bearing contacts and
the contact number is zero, while at point J, the contact
number attains the value 2d. How does the contact num-
ber grow for systems at finite pressure? Assuming that
(i) compression of packings near point J leads to essen-
tially affine deformations, and that (ii) g(r) is regular
for r > 1, z would be expected to grow linearly with φ:
compression by 1% would then bring particles that are
separated by less than 1% of their diameter in contact,
etc. But we have seen above that g(r) is not regular, and
we will show below that deformations are very far from
affine near jamming — so how does z grow with φ?

Many authors have found that the contact number
grows with the square root of the excess density ∆φ :=
φ−φc [2, 15, 20, 25] (see Fig. 7). O’Hern et al. have stud-
ied this scaling in detail, and find that the excess contact
number ∆z := z−zc scales as ∆z ∼ (∆φ)0.50±0.03, where
zc, the critical contact number, is within error bars equal
to the isostatic value 2d [2]. Note that this result is in-
dependent of dimension, interaction potential or polydis-

log('� 'J)
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O’Hern et al. (2002)
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Power-law

Contact number of hard spheres

z − 2d ∼ (φ − φJ)1/2
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G ∼ (φ − φJ)1/2
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Figure 3. D(ω) vs. angular frequency ω for the simulation of reference [50]. 1024 spheres
interacting with repulsive harmonic potentials were compressed in a periodic cubic box to
volume fraction φ, slightly above the jamming threshold φc. Then the energy for arbitrary
small displacements was calculated and the dynamical matrix inferred. The curve labeled
a is at a relative volume fraction φ−φc = 0.1. Proceeding to the left the curves have relative
volume fractions 10−2, 10−3, 10−4, 10−8, respectively. Inset: scaling of ω∗ vs. δz. ω∗ for each
(φ−φc) is determined from the data in the main panel as the frequency where D(ω) is half of
the plateau value. δz vs. (φ−φc) is obtained from the scaling measured in [50]. The line has
slope 1. A colour version of the figure is available online at http://www.edpsciences.org.

the random close packing2. Concerning the structure, the coordination number z,
which is the average number of contacts per particles, is found to follow:

z − zc ∼ (φ − φc)
1
2 (1.2)

independently of the potential, where zc = 2d, and d is the spatial dimension. This
singular increase of the coordination was already noticed in [52]. Another striking
observation is the presence of a singularity in the pair correlation function g(r)
at the jamming threshold. g(r) has an expected delta function of weight zc at a
distance 1 that represents all particles in contact. But it also displays the following
singularity:

g(r) ∼ 1√
r − 1

(1.3)

2. The parameter φ− φc is somewhat less natural than the pressure because φc can vary from sample
to sample. The distribution of φc converges to a well-defined value only when the number of particle
N diverges. Nevertheless, the parameter φ − φc has the advantage of being purely geometrical, and
following [50] we should use it in most cases.
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Scaling

Gap distribution function

g(h) ∼ h−γ, γ = 0.41

P. Charbonneau et al. (2014)

g(h) =
1
Nc ∑

i<j

δ(hij − h), Z(h) = ∫
h

0
dh′￼g(h′￼)
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We study the origin of the scaling behavior in frictionless granular media above the jamming transition
by analyzing their linear response. The response to local forcing is non-self-averaging and fluctuates over
a length scale that diverges at the jamming transition. The response to global forcing becomes increasingly
nonaffine near the jamming transition. This is due to the proximity of floppy modes, the influence of which
we characterize by the local linear response. We show that the local response also governs the anomalous
scaling of elastic constants and contact number.
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The general picture of jamming which was advanced for
systems [1–4] that form a shear-resistent solid phase at
high densities is bringing a new perspective to the defor-
mations of granular and disordered media. A good model
for studying such media are packings of polydisperse
weakly compressible spheres [3,4]. If we measure pressure
in units of the elastic constants and characteristic radius of
the balls (as we will do below), the relevant limit for
granulates is the small-deformation or, equivalently, the
small-pressure limit in the absence of thermal fluctuations.
This limit is also relevant for weakly compressed emul-
sions [5]. We will focus on the case of frictionless, de-
formable spherical particles, and introduce a simple, ex-
perimentally accessible and local measure to characterize
the nature of their deformations [6].

Deformable particles form a stiff jammed phase when
the pressure becomes larger than zero. At the zero pressure
jamming point J, packings form a ‘‘marginal solid’’ and
are isostatic, i.e., the average number of contacts per
particle z reaches the minimum z0

iso " 2d, needed for a
frictionless packing to remain stable in d dimensions.
When the point J is approached by decreasing the pressure,
several surprising scaling relations emerge: the excess
contact number !z " z! z0

iso scales as
!!!!
!
p

, with ! the
typical dimensionless compression of the particles, while
the ratio G=K of the shear modulus G to the compression
modulus K scales as !z. In addition, a diverging time scale
!# $!z has been identified in the density of states of
vibrational modes. The jamming point J thus exhibits
features of a critical point [2–4].

Since packings at the jamming point are marginal, every
additional broken contact generates a global zero-energy
displacement mode, a so-called floppy mode [3,8–10].
Wyart and co-workers [9–11] have shown that the scal-
ing near J is related to those floppy modes, by creating
trial modes for the deformations of weakly jammed
solids. These modes are based on the floppy modes
that would occur when along the faces of cubes of linear
size ‘# $ 1=!z bonds would be cut. Even though for
jammed systems truly floppy modes never occur, their

proximity governs the scaling just above the jamming
point.

In this Letter we uncover that this proximity of floppy
modes causes an increasingly nonaffine response when
approaching point J, and that this response is intimately
related to the (anomalous) scalings of the shear modulusG,
the excess contact number !z, and the length scale ‘#. We
numerically study the linear, quasistatic response of sys-
tems near the jamming transition. The response of granular
media has been widely studied [12–18], but not, we be-
lieve, systematically as a function of the distance to the
jamming point J. Nor does it seem to have been fully
appreciated that the scaling behavior can essentially be
captured within linear response.

We represent the linear response by relative displace-
ments and changes in contact forces, and find significant
changes with the distance to point J. (i) Fig. 1 illustrates
that the response to the loading of a single grain becomes
increasingly disordered over an increasingly large scale
when the jamming transition is approached, this leads to
a direct observation of the diverging length scale ‘# $
1=!z, shown below. We will show that such a local force
response is not self-averaging, even though it is smooth
upon ensemble-averaging and then quantitatively agrees
with continuum elastic behavior. (ii) The response to a
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FIG. 1 (color). Force response networks for a point loading
with pressure as indicated. Blue (red) lines indicate positive
(negative) changes in contact force, the thickness indicating
the amount. The particles themselves are not drawn.
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Spherical particles
Summary

Several physical quantities exhibit the power-low behavior

Contact number

Shear modulus

Correlation length

Pair correlation g(h) ∼ {δφ−μγ(h ≪ δφμ)
h−γ (h ≫ δφμ)

γ = 0.41, μ =
1

1 − γ

z − 2d ∼ δφ1/2

ξ ∼ δφ−1/4

G ∼ δφ1/2
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Sand & rock Grains

Spherical particles

Snow powders

However, in most cases, the constituent particles are

 non-spherical.
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mathematical description presented by Donev et al. [14]. An
important consequence of this result is that static packings of
frictionless ellipses at jamming onset (!φ = 0) will display
nonlinear response even in the limit of infinitesimal pertur-
bations (δ → 0). This source of nonlinearity is in addition to
contact breaking (and reforming) that occurs in static packings
near jamming onset [22].

In this paper, we investigate how the mechanical stability
of static packings of ellipsoidal particles is modified at finite
compression (!φ > 0). For example, when a system at finite
!φ is perturbed by amplitude δ along ê0, do quadratic terms
in δ arise in the total potential energy or do the contributions
remain zero to second order? If quadratic terms are present,
do they stabilize or destabilize the packings (i.e., are the
coefficients of the quadratic terms positive or negative), and
how do the lowest frequency modes of the dynamical matrix
scale with !φ and aspect ratio? The answers to the these
questions are important because they determine the width of
the linear response regime for static packings of ellipsoidal
particles at nonzero compression.

This paper presents several key results for static packings
of ellipsoidal particles at finite compression (!φ > 0) for
systems in both two and three dimensions. First, the stiffness
matrix H possesses 2N (ziso − z) eigenmodes ê0 with zero
eigenvalues even at finite compression. Second, the modes
ê0 are nearly eigenvectors of the dynamical matrix (and
the stress matrix −S), with deviations from the dynamical
matrix eigenvectors êDM

0 that scale as 1 − êDM
0 · ê0 ∝ !φ2. In

addition, the eigenvalues of −S scale as c!φ, with c > 0,
so that finite compression stabilizes packings of ellipsoidal
particles [15]. In contrast, for static packings of spherical
particles, the stiffness matrix H contributions to the dynamical
matrix stabilize all modes (and the contributions from −S are
destabilizing) near jamming onset [14]. Third, at jamming
onset, the harmonic response of packings of ellipsoidal
particles vanishes, and the total potential energy scales as
δ4 for perturbations by amplitude δ along these “quartic”
modes, ê0. Our findings illustrate the significant differences
between amorphous packings of spherical and ellipsoidal
particles.

The remainder of the manuscript will be organized as
follows. In Sec. II we describe the numerical methods that
we employed to measure interparticle overlaps, generate static
packings, and assess the mechanical stability of packings
of ellipsoidal particles. In Sec. III we describe results from
measurements of the density of vibrational modes in the
harmonic approximation, the decomposition of the dynamical
matrix eigenvalues into contributions from the stiffness and
stress matrices, and the relative contributions of the transla-
tional and rotational degrees of freedom to the vibrational
modes as a function of overcompression and aspect ratio
using several packing-generation protocols. In Sec. IV we
summarize our conclusions and provide promising directions
for future research. We also include two appendices. In
Appendix A, we show that the formation of new interparticle
contacts affects the scaling behavior of the potential energy
with the amplitude of small perturbations along eigenmodes
of the dynamical matrix. In Appendix B, we provide analytical
expressions for the elements of the dynamical matrix for
ellipse-shaped particles in 2D.

II. METHODS

In this section we describe the computational methods
employed to generate static packings of convex, anisotropic
particles, i.e., ellipses in 2D and prolate ellipsoids in 3D with
aspect ratio α = a/b of the major to minor axes (Fig. 1),
and analyze their mechanical properties. To inhibit ordering
in 2D, we studied bidisperse mixtures (2-to-1 relative number
density), where the ratio of the major (and minor) axes of
the large and small particles is al/as = bl/bs = 1.4. In 3D,
we focused on a monodisperse size distribution of prolate
ellipsoids. We employed periodic boundaries conditions in
unit square (2D) and cubic (3D) cells and studied systems
sizes in the range from N = 30 to 960 particles to address
finite-size effects.

A. Contact distance

In both 2D and 3D, we assume that particles interact via the
following pairwise, purely repulsive linear spring potential

Vij (rij /σij ) =
{

ε
2

(
1 − rij

σij

)2
rij ! σij

0 rij > σij ,
(1)

where ε is the characteristic energy of the interaction, rij is
the center-to-center separation between particles i and j , σij is
the orientation-dependent center-to-center separation at which
particles i and j come into contact as shown in Fig. 2, and
the total potential energy is V =

∑N
i=1 Vij . Below, energies,

lengths, and time scales will be expressed in units of ε, l =√
I/m, and l

√
m/ε, respectively, where m and I are the mass

and moment of inertia of the ellipsoidal particles.
Perram and Wertheim developed an efficient method for

calculating the exact contact distance between ellipsoidal
particles with any aspect ratio and size distribution in 2D
and 3D [23–25]. In their formulation, the contact distance

a

b

a

b

(b)

(a)

FIG. 1. (Color online) (a) Ellipses in 2D with aspect ratio α =
a/b defined as the ratio of the major to minor axis and (b) prolate
ellipsoids in 3D where α is the ratio of the polar to equatorial lengths.
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Δ = 0
Δ = 0.5

Ri(θ) = R0
i (1 + Fn(θ)), Fn(θ) =

Δ
n

sin(nθ)
Radius of a particle

Model
Non-spherical particles

We investigate the jamming transitions of various 
shapes by changing n and Δ systematically.
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FIG. 3. Definitions of ri, rj , ✓i, ✓j , ✓ij , and h(1)
ij . Red arrows

denote particles directions, black arrow denotes the vector
rj � ri, and dashed lines are parallel to the x-axis.

✓ij = atan2(yj � yi, xj � xi), see Fig. 3. Hereafter, we
use Eq. (34) to calculate the interaction potential. Obvi-
ously, the approximation holds only for � ⌧ 1. Another
limitation is that by construction, our approximation al-
lows that two particles have at most a single contact,
which is not true for particles of non-convex shapes, such
as dimers, even for small aspect ratios [29].

V. NUMERICS

We perform numerical simulations for N particles con-
fined in a L ⇥ L box. We impose the periodic bound-
ary conditions for the both x and y directions. To avoid
the crystallization, we consider an equimolar binary mix-
ture: R0

i = 0.5 for i = 1, . . . , N/2 and R0
i = 0.7 for

i = N/2 + 1, . . . , N . 'J is the point at which VN begins
to have a finite value. In practical, we define 'J as a
packing fraction satisfying [3]

10�16 < VN/N < 2⇥ 10�16. (35)

Here we explain how to generate configurations at 'J .
We first generate a random initial configuration at small
packing fraction ' = 0.1. Next, we slightly increase the
density ' ! ' + " with " = 10�3, and then minimize
VN by using the FIRE algorithm, which combines the
standard molecular dynamics of the Newton equation

m
d2ri
dt2

= �
@V

@ri
,

I
d2✓i
dt2

= �
@V

@✓i
, (36)

with adaptive damping of the velocity [45]. We find that
the FIRE converges in a reasonable time if we set m = 1
and I = � so that r̈i = O(�0) and ✓̈i = O(�0). We stop

the FIRE algorithm when
⇣

@VN
@ri

⌘2
+

�
@VN
@✓ i

�2
< 10�25,

FIG. 4. Configurations at 'J for N = 32, � = 0.2 and
n = 2, . . . , 5.

or VN/N < 10�16 [3]. We repeat the above compres-
sion �' ! ' + " and minimization protocols as long
as VN/N  10�16 after the minimization. On the
contrary, if VN/N > 10�16 after the minimization, we
then decompress the system by changing the sign and
amplitude of " as " ! �"/2. We repeat the above
compression/decompression protocols by changing " !

�"/2 every time the energy crosses the threshold value
VN/N = 10�16. We terminates the simulation when
10�16 < VN/N < 2 ⇥ 10�16. In Fig. 4, we show config-
urations at 'J generated by the above algorithm. When
calculate zJ and g(h), we remove the rattles, for which
the contact number is less than d+1 = 3 [3]. To improve
the statistics, we take the average for 50 independent
samples.

VI. COMPARISON OF OUR MODEL AND

ELLIPSES

In this section, we compare our results with a previous
numerical simulation of ellipses [43], where 'J and zJ
were calculated as functions of A. The shape of an ellipse
is defined by the following equation:

1 =
x2

a2
+

y2

b2
. (37)
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FIG. 2. Particle shapes for various n and �. Black solid, red dotted, and blue dashed lines denote polar plots of Ri(✓)/R
0
i =

1 +�Fn(✓) for � = 0, 0.1, and 0.3, respectively.

B. Volume fraction

We define the volume fraction ' as

' =

PN
i=1 Si

L2
, (24)

where L denotes the linear distance of the system, and
Si denotes the surface of the i-th particle calculated as

Si =

Z 2⇡

0
d✓

Z Ri(✓)

0
rdr =

(R0
i )

2

2

Z 2⇡

0
d✓ [1 +�Fn(✓)]

2 .

(25)

C. Asphericity

For a particle of general shape, it is not always straight-
forward to find out the parameter corresponding to the
linear deviation from the reference disk �. It is some-
times convenient to use the asphericity:

Ai =
P 2
i

4⇡Si
, (26)

where Pi denotes the perimeter calculated as

Pi =

Z 2⇡

0
d✓

s

Ri(✓)2 +

✓
dRi(✓)

d✓

◆2

d✓. (27)

Ai is calculated straightforwardly for particles of any
shape. Furthermore, it is possible to derive the scaling
relation between Ai and �, as follows. Ai takes the min-
imal value Ai = 1 for a disk � = 0, and Ai > 1 for a
non-disk � 6= 0. Therefore, we get

Ai(�) = 1 +
�2

2
A00

i (�) (28)

! � / (Ai � 1)1/2, (29)

where the linear order term does not appear, as Ai(�)
has a minimum at � = 0. Eq. (29) allows to convert the

scaling laws for � Eqs. (14,15,16) to that for Ai [20]. By
substituting Eq. (22) into Eq. (26), one can see that Ai

does not depend on i, Ai = A. For � ⌧ 1, we get

A ⇡ 1 +
�2

2⇡

Z
d✓

�
F 0
n(✓)

2
� Fn(✓)

2
�

(30)

= 1 +
�2

2

✓
1�

1

n2

◆
. (31)

Note that O(�2) order term vanishes for n = 1. This
means that the n = 1 Fourier component only causes
the translation of a particle for the lowest order correc-
tion [44], as illustrated in Fig. 2 (a). Hereafter we only
consider n > 1. Later, we use Eq. (31) to compare our
result with the previous work of ellipsoids.

IV. INTERACTION POTENTIAL

We consider the harmonic potential [3]:

VN =
X

i<j

h2
ij

2
⇥(�hij), (32)

where ⇥(x) denotes the Heaviside step function, and hij

denotes the gap function, which is the minimal distance
between particles i and j. In general, it is a non-trivial
task to calculate hij for general shapes of non-spherical
particles. Since we are interested in the scaling behav-
iors for � ⌧ 1, we calculate hij by using the first order
expansion w.r.t �, see Appendix. B for details of the
calculation. After some manipulations, we get

hij = h(1)
ij +O(�2), (33)

h(1)
ij = |ri � rj |�R0

i �R0
j

��
⇥
R0

iFn(✓i � ✓ij) +R0
jFn(✓j � ✓ji)

⇤
, (34)

where ri = {xi, yi} denotes the position of the i-th par-
ticle, ✓i denotes the direction of the i-th particle, and ✓ij
denotes the relative angle of particles i and j, namely,

Small Δ expansion

For nearly spherical particles, we can derive an analytic form 
by using a perturbation w.r.t Δ.

Gap function: the minimal 
distance between two particles

VN = ∑
i<j

h2
ij

2
θ(−hij)

Harmonic potential

Model
Non-spherical particles



Numerics

1. Start from a random configuration.

2. Increase the packing fraction φ → φ+δφ.

3. Remove contact by the energy minimization.

4. Repeat 2 and 3 until the jamming transition point.

Algorithm

Non-spherical particles
Numerics

Non-spherical particles
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n=2 n=3 n=4

We focus on the configurations at the jamming transition point.
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FIG. 8. �zJ for n = 2 and several N . (a) Markers denote
the numerical results. (b) Scaling plot for the same data.
Black solid line and gray dashed line denote �zJ / �1/2 and
�zJ = 2/Nnr, respectively

n=2
n=3
n=4
n=5

10-5 10-4 10-3 10-2

10-2

10-1

100

�

�z
J

FIG. 9. �zJ for N = 1024 and n = 2, . . . , 5. Markers denote
the numerical results, and solid lines denote �zJ / �1/2.

In Fig. 8 (b), we test the above scaling. A good scaling
collapse confirms Eq. (40). Also, we find that �zJ !

2/Nnr for N2
nr� ! 0, see the dashed horizontal line in

Fig. 8 (b). This means that the system has just one extra
contact than the number of degrees of freedom, which is
also consistent with the previous finite size analysis of
frictionless disks [23].

B. n dependence for N = 1024

Now we focus on the data of the largest size N =
1024. We only show the results for �zJ � 1/N so that
the finite N e↵ects do not appear. In Fig. 9, we plot
our numerical results of �zJ for n = 2, . . . , 5. We find
that �zJ / �1/2 for all n, which confirms the mean-field
prediction Eq. (14).

IX. GAP DISTRIBUTION

In this section, we discuss the gap distribution g(h) at
'J . To improve the statistics, instead of g(h) itself, we
observe the cumulative distribution function:

Z(h) =

R h
0 g(h)dh

R hcut

0 g(h)dh
. (42)

By definition Z(0) = 0 and Z(hcut) = 1. We set hcut = 2,
which is large enough to observe the scaling behavior. In
Fig. 10 (a–d), we show our numerical results of Z(h)
for n = 2, . . . , 5. We find that for small � and h,
Z(h) exhibits the power-law Z(h) ⇠ h1�� , suggesting
g(h) ⇠ h�� . On the contrary, for large �, Z(h) ex-
hibits the liner behavior Z(h) ⇠ h for h ⌧ 1, suggesting
g(h) ⇠ h0. These results are consistent with the mean-
field prediction Eq. (15).
By using Eq. (15), we can deduce the scaling form of

Z(h) as [20]

Z(h) ⇠ �1/2Z̃(��µh), (43)

where Z̃(x) satisfies

Z̃(x) ⇠

(
x x ⌧ 1

x1�� x � 1
. (44)

In Fig. 10 (e–h), we test the above equation. We find a
reasonable data collapse.

X. VIBRATIONAL DENSITY OF STATES

Finally, we investigate the vibrational density of states
D(!) at 'J . We define the Hessian of the interaction
potential as

HXiYj =
@2VN

@Xi@Yj
= KXiYj + TXiYj ,

KXiYj =
X

i<j

v00(hij)
@hij

@Xi

@hij

@Yj
,

TXiYj =
X

i<j

v0(hij)
@2hij

@Xi@Yj
, (45)

where Xi 2 {ri, ✓i} and Yj 2 {rj , ✓j}. At the jamming
transition point, v0(hij) = 0, and thus

HXiYj ! KXiYj

= �ij
X

k 6=i

⇥(�hik)
@hik

@Xi

@hik

@Yi
+ (1� �ij)⇥(�hij)

@hij

@Xi

@hij

@Yj
.

(46)

Using the eigenvalues of HXiYj , {�n}n=1,...,3N , D(!) is
calculated as

D(!) =
1

3N

3NX

n=1

�(! �

p
�n). (47)

The contact number increases with the aspect ratio as
zJ(Δ) − zJ(0) ∼ Δ1/2

Numerics
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)
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as the point that maximizes D(!), and !⇤ as the point
where D(!⇤) = 0.1 in the range ! < 0.1. In Fig. 12,
we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
viously reported for ellipses and ellipsoids [17, 36].
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FIG. 10. (a–d) Z(h) for N = 1024, and n = 2, . . . , 5. Markers denote the numerical results, solid line denotes Z(h) ⇠ h1�� ,
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As mentioned below Eq. (17), D(!) has zero modes at
'J , in addition to the trivial zero modes related to the
rattler particles [35, 43]. In practice, however, the zero
modes have finite frequencies depending on the accuracy
of the numerical simulation. Hereafter, we focus on the
range ! > 10�5, which is large enough to remove the zero
modes.

In Fig. 11, we show our numerical results for D(!).
We find that the behavior of the high ! region (! > 0.1)
does not much depend on �. On decreasing �, D(!) de-
velops a plateau down to the characteristic frequency !⇤.
D(!) has the separated band at !1 ⌧ !⇤. These results
are consistent with the mean-field prediction shown in
Fig. 1 (b). Note that the lowest band in Fig. 1 (b) does
not appear, since !0 = 0 at 'J , and we do not show the
zero modes. We want to calculate !1 and !⇤ from the
numerical data of D(!). For this purpose, we define !1

as the point that maximizes D(!), and !⇤ as the point
where D(!⇤) = 0.1 in the range ! < 0.1. In Fig. 12,
we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
viously reported for ellipses and ellipsoids [17, 36].

XI. SUMMARY AND DISCUSSIONS

In this work, we performed a systematic numerical in-
vestigation for the jamming of nearly spherical particles
in two dimensions. Starting from perfect disks, we sys-
tematically deformed the shapes of particles by the n-th

FIG. 11. D(!) for N = 1024 and n = 2, . . . , 5. Here we do
not show the zero modes.

order term of the Fourier series / sin(n✓) and observed
its e↵ects on the physical quantities at the jamming tran-
sition point. For an e�cient numerical simulation, we de-
rived an analytic formula of the gap function by using the

Δ = 0

Δ = 0.05

Numerics
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Gap distribution
Non-spherical particles

(disk)

Z(h) = ∫
h

0
dhg(h), (g(h) ∼ h−γ → Z(h) ∼ h1−γ)

Gap distribution function is finite and regular

n=2

Z(h) ∼ h → g(h) ∼ const .
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As mentioned below Eq. (17), D(!) has zero modes at
'J , in addition to the trivial zero modes related to the
rattler particles [35, 43]. In practice, however, the zero
modes have finite frequencies depending on the accuracy
of the numerical simulation. Hereafter, we focus on the
range ! > 10�5, which is large enough to remove the zero
modes.

In Fig. 11, we show our numerical results for D(!).
We find that the behavior of the high ! region (! > 0.1)
does not much depend on �. On decreasing �, D(!) de-
velops a plateau down to the characteristic frequency !⇤.
D(!) has the separated band at !1 ⌧ !⇤. These results
are consistent with the mean-field prediction shown in
Fig. 1 (b). Note that the lowest band in Fig. 1 (b) does
not appear, since !0 = 0 at 'J , and we do not show the
zero modes. We want to calculate !1 and !⇤ from the
numerical data of D(!). For this purpose, we define !1

as the point that maximizes D(!), and !⇤ as the point
where D(!⇤) = 0.1 in the range ! < 0.1. In Fig. 12,
we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
viously reported for ellipses and ellipsoids [17, 36].
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Δ plays the same role as δφ !

Spherical particles

(near jamming)

Non-spherical

(at jamming)

g(h) ∼ {δφ−μγ(h ≪ δφμ)
h−γ (h ≫ δφμ)

zJ − 2d ∼ Δ1/2z(φ) − 2d ∼ δφ1/2

NumericsSpherical vs non-spherical

g(h) ∼ {Δ−μγ(h ≪ Δμ)
h−γ (h ≫ Δμ)

ω* ∼ δφ1/2 ω* ∼ Δ1/2
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Discussion

• Does the correlation length diverge at the jamming 
transition point of non-spherical particles?


• Investigate scalings above jamming

  cf: ellipsoids

NumericsSummary and Future works

M. Mailman et al (2009), C. F. Schreck et al. (2012)z − zJ ∼ (φ − φJ)1G ∼ (φ − φJ)1

• Investigate scalings below jamming (rheology)

• Geometric friction

Weak friction Strong friction

H. Ikeda et al. PRL 124, 208001 (2020)

Summary

Deformation = compression

Future works
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As mentioned below Eq. (17), D(!) has zero modes at
'J , in addition to the trivial zero modes related to the
rattler particles [35, 43]. In practice, however, the zero
modes have finite frequencies depending on the accuracy
of the numerical simulation. Hereafter, we focus on the
range ! > 10�5, which is large enough to remove the zero
modes.

In Fig. 11, we show our numerical results for D(!).
We find that the behavior of the high ! region (! > 0.1)
does not much depend on �. On decreasing �, D(!) de-
velops a plateau down to the characteristic frequency !⇤.
D(!) has the separated band at !1 ⌧ !⇤. These results
are consistent with the mean-field prediction shown in
Fig. 1 (b). Note that the lowest band in Fig. 1 (b) does
not appear, since !0 = 0 at 'J , and we do not show the
zero modes. We want to calculate !1 and !⇤ from the
numerical data of D(!). For this purpose, we define !1

as the point that maximizes D(!), and !⇤ as the point
where D(!⇤) = 0.1 in the range ! < 0.1. In Fig. 12,
we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
viously reported for ellipses and ellipsoids [17, 36].

XI. SUMMARY AND DISCUSSIONS

In this work, we performed a systematic numerical in-
vestigation for the jamming of nearly spherical particles
in two dimensions. Starting from perfect disks, we sys-
tematically deformed the shapes of particles by the n-th

FIG. 11. D(!) for N = 1024 and n = 2, . . . , 5. Here we do
not show the zero modes.

order term of the Fourier series / sin(n✓) and observed
its e↵ects on the physical quantities at the jamming tran-
sition point. For an e�cient numerical simulation, we de-
rived an analytic formula of the gap function by using the
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Discussion

Both the distance from the jamming transition point and 
deviation from spheres controls the scaling behaviors.

Spherical particles

(near jamming)

Non-spherical

(at jamming)

g(h) ∼ {δφ−μγ(h ≪ δφμ)
h−γ (h ≫ δφμ)

zJ − 2d ∼ Δ1/2z(φ) − 2d ∼ δφ1/2

NumericsSpherical vs non-spherical

g(h) ∼ {Δ−μγ(h ≪ Δμ)
h−γ (h ≫ Δμ)



For general shapes of non-spherical particles, 
the calculation of the gap function is not so easy.

Gap function: the minimal 
distance between two particles

VN = ∑
i<j

h2
ij

2
θ(−hij)

Harmonic potential

Model
Non-spherical particles

F. Alonso-Marroqúın

considered separately. Both approaches are also extremely
difficult to extend to 3D, because the calculation of
the overlap between two polyhedra is computationally
very expensive. This is the main reason why most of
the commercial codes for particulate systems are still
based on simulations with spheres, or clumps of spheres
representing complex-shaped objects [9].
In this letter I present a solution to this problem in 2D,

using the concept of spheropolygons. They are generated
from the Minkowski sum of a polygon with a disk, which
is nothing more than the object resulting from sweeping
a disk around a polygon. This simple concept can be used
to generate very complex shapes, including non-convex
bodies, without the need to decompose them into spherical
or convex parts. The interaction between spheropoly-
gons is modeled by considering all possible vertex-edge
interactions. The result is a simple and elegant model,
where different interaction laws can be implemented
straightforwardly. I anticipate that this model will be the
starting point to the development of a new generation
of particle-based models. These models will capture both
complex particle shape and realistic interactions laws
in a unified framework, allowing simulations of several
systems involved in complex-shaped rigid bodies.

The model. – To solve the interaction between sphero-
polygons, we adopt the basic assumption of rigid-body
dynamics: The particles do not change of shape, and
interaction occurs when they overlap. Finite stiffness is
attributed to the particles, so that the bodies are not truly
rigid as those used in the Contact Dynamics method [10].
The model is implemented in a C++, fully customizable,
object-oriented code.

Minkowski sum. Given two sets of points P and
Q in an Euclidean space, their Minkowski sum is given
by P +Q= {!x+ !y | !x∈ P, !y ∈Q}. This operation is
geometrically equivalent to the sweeping of one set
around the profile of the other without changing the
relative orientation. A special case is the sum of a polygon
with a disk, which is defined here as spheropolygons.
Other examples of a Minkowski sum are the sphero-
cyllinder (sphere+ line segment) [11], the sphero-
simplex (sphere+ simplex) [12] and the spheropolyhedron
(sphere+polyhedron) [13], which are used in simulations
of particulate systems.
A prototype of the spheropolygons is the Minkowski cow

shown in part (a) of fig. 1. The Minkowski sum is compared
to the clump of disks technique shown in part (b) of fig. 1.
The number of vertices required to represent a complex
shape with the Minkowski sum is typically lower than the
number of disks needed to reconstruct the clumpy object.
This property holds when one removes the inner disks of
the clumpy object. In the case of the clumpy cow, the
total number of disks is 726, and the number of boundary
disks is 296, which is still larger than the 62 vertices of
the polygon. Another visible advantage of the Minkowski

Polygon

Sphere

(a) (b)

Fig. 1: (a) Minkowski cow obtained by sweeping a disk around
a polygon of 62 edges. The disk has radius 10 cm and the length
of the polygon is 3m. (b) The cow as represented by a clump
of disks using 726 disks.

sum approach is that it removes the unwanted roughness
of the surface in the clump-of-disks method.
The point-inside-spheropolygon test combined with a

basic Monte Carlo method is used to evaluate the inte-
gral expressions for mass, center of mass and the moment
of inertia. This numerical integration, whose details are
explained elsewhere [14], does not represent much compu-
tational effort, because the mass properties are calculated
only once and they are assumed to be constant throughout
the simulation.

Interaction force. To solve the interaction between
spheropolygons, we consider all vertex-edge distances
between the polygons. Let us take two spheropolygons SPi
and SPj with their respective polygons Pi and Pj and the
radii of the disks ri and rj . Each polygon is defined by the
set of vertices {Vi} and edges {Ei}. The overlapping length
between each pair of vertex-edge (V,E) is defined as

δ(V,E) = 〈ri+ rj − d(V,E)〉, (1)

where d(X,E) =‖ !Y − !X ‖ is the Euclidean distance from
the vertex V to the segment E. Here !X is the position of
the vertex V and !Y is its closest point on the edge E. The
ramp function 〈x〉 returns x if x> 0 and zero otherwise.
The force !Fij acting on particle i by the particle j is

defined by

!Fij =−!Fji =
∑

ViEj

!F (Vi, Ej)+
∑

VjEi

!F (Vj , Ei), (2)

where !F (V,E) represents the force between the vertex
V and the edge E. If the vertex-edge overlapping length
is zero, we take !F (V,E) = 0. Different vertex-edge forces
can be included in the model: linear dashpots, non-linear
Hertzian laws, Lennard-Jones forces, dissipative viscous
forces, sliding friction, etc.
The torque on particle i given by j is

τij =
∑

ViEj

(!R(Vi, Ej)−!ri)× !F (Vi, Ej)

+
∑

VjEi

(!R(Vj , Ei)−!ri)× !F (Vj , Ei), (3)

14001-p2
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FIG. 10. (a–d) Z(h) for N = 1024, and n = 2, . . . , 5. Markers denote the numerical results, solid line denotes Z(h) ⇠ h1�� ,
and dashed line denotes Z(h) ⇠ h. (e–h) Scaling plot for the same data.

As mentioned below Eq. (17), D(!) has zero modes at
'J , in addition to the trivial zero modes related to the
rattler particles [35, 43]. In practice, however, the zero
modes have finite frequencies depending on the accuracy
of the numerical simulation. Hereafter, we focus on the
range ! > 10�5, which is large enough to remove the zero
modes.

In Fig. 11, we show our numerical results for D(!).
We find that the behavior of the high ! region (! > 0.1)
does not much depend on �. On decreasing �, D(!) de-
velops a plateau down to the characteristic frequency !⇤.
D(!) has the separated band at !1 ⌧ !⇤. These results
are consistent with the mean-field prediction shown in
Fig. 1 (b). Note that the lowest band in Fig. 1 (b) does
not appear, since !0 = 0 at 'J , and we do not show the
zero modes. We want to calculate !1 and !⇤ from the
numerical data of D(!). For this purpose, we define !1

as the point that maximizes D(!), and !⇤ as the point
where D(!⇤) = 0.1 in the range ! < 0.1. In Fig. 12,
we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
viously reported for ellipses and ellipsoids [17, 36].

XI. SUMMARY AND DISCUSSIONS

In this work, we performed a systematic numerical in-
vestigation for the jamming of nearly spherical particles
in two dimensions. Starting from perfect disks, we sys-
tematically deformed the shapes of particles by the n-th

FIG. 11. D(!) for N = 1024 and n = 2, . . . , 5. Here we do
not show the zero modes.

order term of the Fourier series / sin(n✓) and observed
its e↵ects on the physical quantities at the jamming tran-
sition point. For an e�cient numerical simulation, we de-
rived an analytic formula of the gap function by using the
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we show � dependence of !1 and !⇤. We find !1 ⇠ �
and !⇤ ⇠ �1/2, which are consistent with the mean-field
prediction, Eq. (17). The similar results have been pre-
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mathematical description presented by Donev et al. [14]. An
important consequence of this result is that static packings of
frictionless ellipses at jamming onset (!φ = 0) will display
nonlinear response even in the limit of infinitesimal pertur-
bations (δ → 0). This source of nonlinearity is in addition to
contact breaking (and reforming) that occurs in static packings
near jamming onset [22].

In this paper, we investigate how the mechanical stability
of static packings of ellipsoidal particles is modified at finite
compression (!φ > 0). For example, when a system at finite
!φ is perturbed by amplitude δ along ê0, do quadratic terms
in δ arise in the total potential energy or do the contributions
remain zero to second order? If quadratic terms are present,
do they stabilize or destabilize the packings (i.e., are the
coefficients of the quadratic terms positive or negative), and
how do the lowest frequency modes of the dynamical matrix
scale with !φ and aspect ratio? The answers to the these
questions are important because they determine the width of
the linear response regime for static packings of ellipsoidal
particles at nonzero compression.

This paper presents several key results for static packings
of ellipsoidal particles at finite compression (!φ > 0) for
systems in both two and three dimensions. First, the stiffness
matrix H possesses 2N (ziso − z) eigenmodes ê0 with zero
eigenvalues even at finite compression. Second, the modes
ê0 are nearly eigenvectors of the dynamical matrix (and
the stress matrix −S), with deviations from the dynamical
matrix eigenvectors êDM

0 that scale as 1 − êDM
0 · ê0 ∝ !φ2. In

addition, the eigenvalues of −S scale as c!φ, with c > 0,
so that finite compression stabilizes packings of ellipsoidal
particles [15]. In contrast, for static packings of spherical
particles, the stiffness matrix H contributions to the dynamical
matrix stabilize all modes (and the contributions from −S are
destabilizing) near jamming onset [14]. Third, at jamming
onset, the harmonic response of packings of ellipsoidal
particles vanishes, and the total potential energy scales as
δ4 for perturbations by amplitude δ along these “quartic”
modes, ê0. Our findings illustrate the significant differences
between amorphous packings of spherical and ellipsoidal
particles.

The remainder of the manuscript will be organized as
follows. In Sec. II we describe the numerical methods that
we employed to measure interparticle overlaps, generate static
packings, and assess the mechanical stability of packings
of ellipsoidal particles. In Sec. III we describe results from
measurements of the density of vibrational modes in the
harmonic approximation, the decomposition of the dynamical
matrix eigenvalues into contributions from the stiffness and
stress matrices, and the relative contributions of the transla-
tional and rotational degrees of freedom to the vibrational
modes as a function of overcompression and aspect ratio
using several packing-generation protocols. In Sec. IV we
summarize our conclusions and provide promising directions
for future research. We also include two appendices. In
Appendix A, we show that the formation of new interparticle
contacts affects the scaling behavior of the potential energy
with the amplitude of small perturbations along eigenmodes
of the dynamical matrix. In Appendix B, we provide analytical
expressions for the elements of the dynamical matrix for
ellipse-shaped particles in 2D.

II. METHODS

In this section we describe the computational methods
employed to generate static packings of convex, anisotropic
particles, i.e., ellipses in 2D and prolate ellipsoids in 3D with
aspect ratio α = a/b of the major to minor axes (Fig. 1),
and analyze their mechanical properties. To inhibit ordering
in 2D, we studied bidisperse mixtures (2-to-1 relative number
density), where the ratio of the major (and minor) axes of
the large and small particles is al/as = bl/bs = 1.4. In 3D,
we focused on a monodisperse size distribution of prolate
ellipsoids. We employed periodic boundaries conditions in
unit square (2D) and cubic (3D) cells and studied systems
sizes in the range from N = 30 to 960 particles to address
finite-size effects.

A. Contact distance

In both 2D and 3D, we assume that particles interact via the
following pairwise, purely repulsive linear spring potential

Vij (rij /σij ) =
{

ε
2

(
1 − rij

σij

)2
rij ! σij

0 rij > σij ,
(1)

where ε is the characteristic energy of the interaction, rij is
the center-to-center separation between particles i and j , σij is
the orientation-dependent center-to-center separation at which
particles i and j come into contact as shown in Fig. 2, and
the total potential energy is V =

∑N
i=1 Vij . Below, energies,

lengths, and time scales will be expressed in units of ε, l =√
I/m, and l

√
m/ε, respectively, where m and I are the mass

and moment of inertia of the ellipsoidal particles.
Perram and Wertheim developed an efficient method for

calculating the exact contact distance between ellipsoidal
particles with any aspect ratio and size distribution in 2D
and 3D [23–25]. In their formulation, the contact distance

a

b

a

b

(b)

(a)

FIG. 1. (Color online) (a) Ellipses in 2D with aspect ratio α =
a/b defined as the ratio of the major to minor axis and (b) prolate
ellipsoids in 3D where α is the ratio of the polar to equatorial lengths.
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compression !φ and aspect ratio α, where N (ω) is the
number of vibrational frequencies less than ω. We will also
investigate the relative contributions of the translational and
rotational degrees of freedom to the nontrivial eigenvectors
of the dynamical matrix, m̂i = {mj=1

xi ,m
j=1
yi ,m

j=1
θ i , . . . ,m

j=N
xi ,

m
j=N
yi ,m

j=N
θ i } for ellipses in 2D and m̂i = {mj=1

xi ,m
j=1
yi ,

m
j=1
zi ,m

j=1
θ i ,m

j=1
φi , . . . ,m

j=N
xi ,m

j=N
yi ,m

j=N
zi ,m

j=N
θ i ,m

j=N
φi } for

prolate ellipsoids in 3D, where i labels the eigenvector and
runs from 1 to Ndf − d. The eigenvectors are normalized
such that m̂2

i = 1.

D. Dynamical matrix decomposition

The dynamical matrix [Eq. (13)] can be decomposed into
two component matrices M = H − S: (1) the stiffness matrix
H that includes only second-order derivatives of the total
potential energy V with respect to the configurational degrees
of freedom and (2) the stress matrix S that includes only
first-order derivatives of V [14]. The kl elements of H and
S are given by

Hkl =
∑

i>j

∂2V

∂(rij /σij )2

∂(rij /σij )
∂uk

∂(rij /σij )
∂ul

, (15)

Skl = −
∑

i>j

∂V

∂(rij /σij )
∂2(rij /σij )

∂uk∂ul

, (16)

where the sums are over distinct pairs of overlapping particles
i and j . Since ∂2V/∂(rij /σij )2 = ε for the purely repulsive
linear spring potential [Eq. (1)], the stiffness matrix depends
only on the geometry of the packing [i.e., ∂(rij /σij )/∂uk].
Also, at zero compression !φ = 0, S = 0, M = H , and only
the stiffness matrix contributes to the dynamical matrix. The
frequencies associated with the eigenvalues hi of the stiffness
matrix (at any !φ) are denoted by ωhi =

√
hi/εbs , and the

stiffness matrix eigenvectors are normalized such that ĥ2
i = 1.

E. Contact number

When counting the number of interparticle contacts Nc, we
remove all rattler particles [33] (defined as those with fewer
than d + 1 contacts) and do not include the contacts that rattler
particles make with nonrattler particles [34]. Removing these
contacts may cause nonrattler particles to become rattlers, and
thus this process is performed recursively [6]. Note that for
ellipsoidal particles with d + 1 contacts, the lines normal to the
points (or planes in 3D) of contact must all intersect, otherwise
the system is not mechanically stable. The number of contacts
per particle is defined as z = 2Nc/(N − Nr ), where Nr is the
number of rattlers. We find that the number of rattler particles
decreases with aspect ratio from approximately 5% of the
system at α = 1 to zero for α > 1.2 in both 2D and 3D [9].

III. RESULTS

Static packings of ellipsoidal particles at jamming onset
typically possess fewer contacts than predicted by isostatic
counting arguments [14,18,19], z < ziso, over a wide range
of aspect ratio as shown in Fig. 5. This finding raises
a number of important questions. For example, are static
packings of ellipsoidal particles mechanically stable at finite
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FIG. 5. Average contact number z versus aspect ratio α for static
packings of (a) bidisperse ellipses in 2D and (b) prolate ellipsoids in
3D at jamming onset. The isostatic values ziso = 6 (2D) and 10 (3D)
are indicated by dashed lines.

!φ > 0, i.e., does the dynamical matrix for these systems
possess nontrivial zero-frequency modes at !φ > 0? In this
section we will show that packings of ellipsoidal particles are
indeed mechanically stable (with no nontrivial zero-frequency
modes) by calculating the dynamical, stress, and stiffness
matrices for these systems as a function of compression !φ,
aspect ratio α, and packing-generation protocol. Further, we
will show that the density of vibrational modes for these
systems possesses three characteristic frequency regimes and
determine the scaling of these characteristic frequencies with
!φ and α.

A. Density of vibrational frequencies D(ω)

A number of studies have shown that amorphous sphere
packings are fragile solids in the sense that the density of
vibrational frequencies (in the harmonic approximation)
D(ω) for these systems possesses an excess of low-frequency
modes over Debye solids near jamming onset; i.e., a plateau
forms and extends to lower frequencies as !φ → 0 [6,35,36].
In this work, we will calculate D(ω) as a function of !φ and
aspect ratio α for amorphous packings of ellipsoidal particles
and show that the density of vibrational modes for these
systems shows significant qualitative differences from that for
spherical particles.

In Figs. 6(a) and 6(b), we show D(ω) on linear and
log-log scales, respectively, for ellipse-shaped particles in 2D
at !φ = 10−8 over a range of aspect ratios from α = 1 to 2.
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z J <latexit sha1_base64="juci2IJj1+FElMgYP8OqF1wUAu0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi3iqaD+gDWWz3bRLN5uwOxFq6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup76rUeujYjVA44T7kd0oEQoGEUr3T/1bnvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdVzq97deaV2lcdRhCM4hlPw4AJqcAN1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx80oI27</latexit><latexit sha1_base64="juci2IJj1+FElMgYP8OqF1wUAu0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi3iqaD+gDWWz3bRLN5uwOxFq6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup76rUeujYjVA44T7kd0oEQoGEUr3T/1bnvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdVzq97deaV2lcdRhCM4hlPw4AJqcAN1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx80oI27</latexit><latexit sha1_base64="juci2IJj1+FElMgYP8OqF1wUAu0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi3iqaD+gDWWz3bRLN5uwOxFq6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup76rUeujYjVA44T7kd0oEQoGEUr3T/1bnvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdVzq97deaV2lcdRhCM4hlPw4AJqcAN1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx80oI27</latexit><latexit sha1_base64="juci2IJj1+FElMgYP8OqF1wUAu0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi3iqaD+gDWWz3bRLN5uwOxFq6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup76rUeujYjVA44T7kd0oEQoGEUr3T/1bnvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdVzq97deaV2lcdRhCM4hlPw4AJqcAN1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx80oI27</latexit>
zJ = 2d

<latexit sha1_base64="LXPG4/Z/ZxjsMm0pKWY68TK5psw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGIV6EoBfxFME8IFnC7OxsMmZ2ZpmZFeKSf/DiQRGv/o83/8bJA9HEgoaiqpvuriDhTBvX/XJyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlagdYU84EbRhmOG0niuI44LQVDK8mfuuBKs2kuDOjhPox7gsWMYKNlZqPvZuLStgrltyyOwX6Id4iKcEc9V7xsxtKksZUGMKx1h3PTYyfYWUY4XRc6KaaJpgMcZ92LBU4ptrPpteO0YlVQhRJZUsYNFV/T2Q41noUB7YzxmagF72J+J/XSU107mdMJKmhgswWRSlHRqLJ6yhkihLDR5Zgopi9FZEBVpgYG1DBhrD08jJpVsqeW/Zuz0q1y3kceTiCYzgFD6pQg2uoQwMI3MMTvMCrI51n5815n7XmnPnMIfyB8/EN6LyOrQ==</latexit><latexit sha1_base64="LXPG4/Z/ZxjsMm0pKWY68TK5psw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGIV6EoBfxFME8IFnC7OxsMmZ2ZpmZFeKSf/DiQRGv/o83/8bJA9HEgoaiqpvuriDhTBvX/XJyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlagdYU84EbRhmOG0niuI44LQVDK8mfuuBKs2kuDOjhPox7gsWMYKNlZqPvZuLStgrltyyOwX6Id4iKcEc9V7xsxtKksZUGMKx1h3PTYyfYWUY4XRc6KaaJpgMcZ92LBU4ptrPpteO0YlVQhRJZUsYNFV/T2Q41noUB7YzxmagF72J+J/XSU107mdMJKmhgswWRSlHRqLJ6yhkihLDR5Zgopi9FZEBVpgYG1DBhrD08jJpVsqeW/Zuz0q1y3kceTiCYzgFD6pQg2uoQwMI3MMTvMCrI51n5815n7XmnPnMIfyB8/EN6LyOrQ==</latexit><latexit sha1_base64="LXPG4/Z/ZxjsMm0pKWY68TK5psw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGIV6EoBfxFME8IFnC7OxsMmZ2ZpmZFeKSf/DiQRGv/o83/8bJA9HEgoaiqpvuriDhTBvX/XJyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlagdYU84EbRhmOG0niuI44LQVDK8mfuuBKs2kuDOjhPox7gsWMYKNlZqPvZuLStgrltyyOwX6Id4iKcEc9V7xsxtKksZUGMKx1h3PTYyfYWUY4XRc6KaaJpgMcZ92LBU4ptrPpteO0YlVQhRJZUsYNFV/T2Q41noUB7YzxmagF72J+J/XSU107mdMJKmhgswWRSlHRqLJ6yhkihLDR5Zgopi9FZEBVpgYG1DBhrD08jJpVsqeW/Zuz0q1y3kceTiCYzgFD6pQg2uoQwMI3MMTvMCrI51n5815n7XmnPnMIfyB8/EN6LyOrQ==</latexit><latexit sha1_base64="LXPG4/Z/ZxjsMm0pKWY68TK5psw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGIV6EoBfxFME8IFnC7OxsMmZ2ZpmZFeKSf/DiQRGv/o83/8bJA9HEgoaiqpvuriDhTBvX/XJyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlagdYU84EbRhmOG0niuI44LQVDK8mfuuBKs2kuDOjhPox7gsWMYKNlZqPvZuLStgrltyyOwX6Id4iKcEc9V7xsxtKksZUGMKx1h3PTYyfYWUY4XRc6KaaJpgMcZ92LBU4ptrPpteO0YlVQhRJZUsYNFV/T2Q41noUB7YzxmagF72J+J/XSU107mdMJKmhgswWRSlHRqLJ6yhkihLDR5Zgopi9FZEBVpgYG1DBhrD08jJpVsqeW/Zuz0q1y3kceTiCYzgFD6pQg2uoQwMI3MMTvMCrI51n5815n7XmnPnMIfyB8/EN6LyOrQ==</latexit>

↵ = a/b
<latexit sha1_base64="kpuUkVuOMQ0LpFUNrjMKy8pbDPU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU01E0ItQ9OKxgrWFJpTJdtMu3STL7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMC6Xg2rjut1NaWV1b3yhvVra2d3b3qvsHjzrNFGUtmopUdULUTPCEtQw3gnWkYhiHgrXD0e3Ubz8xpXmaPJixZEGMg4RHnKKxku+jkEMk1wTPwl615tbdGcgy8QpSgwLNXvXL76c0i1liqECtu54rTZCjMpwKNqn4mWYS6QgHrGtpgjHTQT67eUJOrNInUapsJYbM1N8TOcZaj+PQdsZohnrRm4r/ed3MRFdBzhOZGZbQ+aIoE8SkZBoA6XPFqBFjS5Aqbm8ldIgKqbExVWwI3uLLy+TxvO65de/+ota4KeIowxEcwyl4cAkNuIMmtICChGd4hTcnc16cd+dj3lpyiplD+APn8wemzZDD</latexit><latexit sha1_base64="kpuUkVuOMQ0LpFUNrjMKy8pbDPU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU01E0ItQ9OKxgrWFJpTJdtMu3STL7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMC6Xg2rjut1NaWV1b3yhvVra2d3b3qvsHjzrNFGUtmopUdULUTPCEtQw3gnWkYhiHgrXD0e3Ubz8xpXmaPJixZEGMg4RHnKKxku+jkEMk1wTPwl615tbdGcgy8QpSgwLNXvXL76c0i1liqECtu54rTZCjMpwKNqn4mWYS6QgHrGtpgjHTQT67eUJOrNInUapsJYbM1N8TOcZaj+PQdsZohnrRm4r/ed3MRFdBzhOZGZbQ+aIoE8SkZBoA6XPFqBFjS5Aqbm8ldIgKqbExVWwI3uLLy+TxvO65de/+ota4KeIowxEcwyl4cAkNuIMmtICChGd4hTcnc16cd+dj3lpyiplD+APn8wemzZDD</latexit><latexit sha1_base64="kpuUkVuOMQ0LpFUNrjMKy8pbDPU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU01E0ItQ9OKxgrWFJpTJdtMu3STL7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMC6Xg2rjut1NaWV1b3yhvVra2d3b3qvsHjzrNFGUtmopUdULUTPCEtQw3gnWkYhiHgrXD0e3Ubz8xpXmaPJixZEGMg4RHnKKxku+jkEMk1wTPwl615tbdGcgy8QpSgwLNXvXL76c0i1liqECtu54rTZCjMpwKNqn4mWYS6QgHrGtpgjHTQT67eUJOrNInUapsJYbM1N8TOcZaj+PQdsZohnrRm4r/ed3MRFdBzhOZGZbQ+aIoE8SkZBoA6XPFqBFjS5Aqbm8ldIgKqbExVWwI3uLLy+TxvO65de/+ota4KeIowxEcwyl4cAkNuIMmtICChGd4hTcnc16cd+dj3lpyiplD+APn8wemzZDD</latexit><latexit sha1_base64="kpuUkVuOMQ0LpFUNrjMKy8pbDPU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU01E0ItQ9OKxgrWFJpTJdtMu3STL7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMC6Xg2rjut1NaWV1b3yhvVra2d3b3qvsHjzrNFGUtmopUdULUTPCEtQw3gnWkYhiHgrXD0e3Ubz8xpXmaPJixZEGMg4RHnKKxku+jkEMk1wTPwl615tbdGcgy8QpSgwLNXvXL76c0i1liqECtu54rTZCjMpwKNqn4mWYS6QgHrGtpgjHTQT67eUJOrNInUapsJYbM1N8TOcZaj+PQdsZohnrRm4r/ed3MRFdBzhOZGZbQ+aIoE8SkZBoA6XPFqBFjS5Aqbm8ldIgKqbExVWwI3uLLy+TxvO65de/+ota4KeIowxEcwyl4cAkNuIMmtICChGd4hTcnc16cd+dj3lpyiplD+APn8wemzZDD</latexit>
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G <latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit>

'� 'J
<latexit sha1_base64="JeSlv3lQ3AL6rA6rOGrlfNIO2vk=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBjSWRgi6LbsRVBfuANoTJdNIOnUzCzKRSYj/FjQtF3Pol7vwbp20W2nrgcg/n3MvcOUHCmdKO820V1tY3NreK26Wd3b39A7t82FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4kFPEupFeCBYyAjWRvLtcm+MZTJk53n373y74lSdOdAqcXNSgRwN3/7q9WOSRlRowrFSXddJtJdhqRnhdFrqpYommIzwgHYNFTiiysvmp0/RqVH6KIylKaHRXP29keFIqUkUmMkI66Fa9mbif1431eGVlzGRpJoKsngoTDnSMZrlgPpMUqL5xBBMJDO3IjLEEhNt0iqZENzlL6+S1kXVdarufa1Sv87jKMIxnMAZuHAJdbiFBjSBwCM8wyu8WU/Wi/VufSxGC1a+cwR/YH3+ADuzk/c=</latexit><latexit sha1_base64="JeSlv3lQ3AL6rA6rOGrlfNIO2vk=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBjSWRgi6LbsRVBfuANoTJdNIOnUzCzKRSYj/FjQtF3Pol7vwbp20W2nrgcg/n3MvcOUHCmdKO820V1tY3NreK26Wd3b39A7t82FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4kFPEupFeCBYyAjWRvLtcm+MZTJk53n373y74lSdOdAqcXNSgRwN3/7q9WOSRlRowrFSXddJtJdhqRnhdFrqpYommIzwgHYNFTiiysvmp0/RqVH6KIylKaHRXP29keFIqUkUmMkI66Fa9mbif1431eGVlzGRpJoKsngoTDnSMZrlgPpMUqL5xBBMJDO3IjLEEhNt0iqZENzlL6+S1kXVdarufa1Sv87jKMIxnMAZuHAJdbiFBjSBwCM8wyu8WU/Wi/VufSxGC1a+cwR/YH3+ADuzk/c=</latexit><latexit sha1_base64="JeSlv3lQ3AL6rA6rOGrlfNIO2vk=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBjSWRgi6LbsRVBfuANoTJdNIOnUzCzKRSYj/FjQtF3Pol7vwbp20W2nrgcg/n3MvcOUHCmdKO820V1tY3NreK26Wd3b39A7t82FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4kFPEupFeCBYyAjWRvLtcm+MZTJk53n373y74lSdOdAqcXNSgRwN3/7q9WOSRlRowrFSXddJtJdhqRnhdFrqpYommIzwgHYNFTiiysvmp0/RqVH6KIylKaHRXP29keFIqUkUmMkI66Fa9mbif1431eGVlzGRpJoKsngoTDnSMZrlgPpMUqL5xBBMJDO3IjLEEhNt0iqZENzlL6+S1kXVdarufa1Sv87jKMIxnMAZuHAJdbiFBjSBwCM8wyu8WU/Wi/VufSxGC1a+cwR/YH3+ADuzk/c=</latexit><latexit sha1_base64="JeSlv3lQ3AL6rA6rOGrlfNIO2vk=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBjSWRgi6LbsRVBfuANoTJdNIOnUzCzKRSYj/FjQtF3Pol7vwbp20W2nrgcg/n3MvcOUHCmdKO820V1tY3NreK26Wd3b39A7t82FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4kFPEupFeCBYyAjWRvLtcm+MZTJk53n373y74lSdOdAqcXNSgRwN3/7q9WOSRlRowrFSXddJtJdhqRnhdFrqpYommIzwgHYNFTiiysvmp0/RqVH6KIylKaHRXP29keFIqUkUmMkI66Fa9mbif1431eGVlzGRpJoKsngoTDnSMZrlgPpMUqL5xBBMJDO3IjLEEhNt0iqZENzlL6+S1kXVdarufa1Sv87jKMIxnMAZuHAJdbiFBjSBwCM8wyu8WU/Wi/VufSxGC1a+cwR/YH3+ADuzk/c=</latexit>

G ⇠ �'
0.5

<latexit sha1_base64="9CGXH8JhKZRUkuoZFq4XGt1czks=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgKiSi6LLoQpcV7AOaWCaTaTt0JgkzN4USiht/xY0LRdz6Fe78G6cPRFsPXDiccy/33hOmgmtw3S9rYXFpeWW1sFZc39jc2rZ3dms6yRRlVZqIRDVCopngMasCB8EaqWJEhoLVw97VyK/3mdI8ie9gkLJAkk7M25wSMFLL3r/2NZfYj5gA4veJSrv8Pneds2HLLrmOOwb+Id4sKaEpKi37048SmkkWAxVE66bnphDkRAGngg2LfqZZSmiPdFjT0JhIpoN8/MIQHxklwu1EmYoBj9XfEzmRWg9kaDolga6e9Ubif14zg/ZFkPM4zYDFdLKonQkMCR7lgSOuGAUxMIRQxc2tmHaJIhRMakUTwtzL86R24niu492elsqX0zgK6AAdomPkoXNURjeogqqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7A+vgGZ/5bn</latexit><latexit sha1_base64="9CGXH8JhKZRUkuoZFq4XGt1czks=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgKiSi6LLoQpcV7AOaWCaTaTt0JgkzN4USiht/xY0LRdz6Fe78G6cPRFsPXDiccy/33hOmgmtw3S9rYXFpeWW1sFZc39jc2rZ3dms6yRRlVZqIRDVCopngMasCB8EaqWJEhoLVw97VyK/3mdI8ie9gkLJAkk7M25wSMFLL3r/2NZfYj5gA4veJSrv8Pneds2HLLrmOOwb+Id4sKaEpKi37048SmkkWAxVE66bnphDkRAGngg2LfqZZSmiPdFjT0JhIpoN8/MIQHxklwu1EmYoBj9XfEzmRWg9kaDolga6e9Ubif14zg/ZFkPM4zYDFdLKonQkMCR7lgSOuGAUxMIRQxc2tmHaJIhRMakUTwtzL86R24niu492elsqX0zgK6AAdomPkoXNURjeogqqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7A+vgGZ/5bn</latexit><latexit sha1_base64="9CGXH8JhKZRUkuoZFq4XGt1czks=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgKiSi6LLoQpcV7AOaWCaTaTt0JgkzN4USiht/xY0LRdz6Fe78G6cPRFsPXDiccy/33hOmgmtw3S9rYXFpeWW1sFZc39jc2rZ3dms6yRRlVZqIRDVCopngMasCB8EaqWJEhoLVw97VyK/3mdI8ie9gkLJAkk7M25wSMFLL3r/2NZfYj5gA4veJSrv8Pneds2HLLrmOOwb+Id4sKaEpKi37048SmkkWAxVE66bnphDkRAGngg2LfqZZSmiPdFjT0JhIpoN8/MIQHxklwu1EmYoBj9XfEzmRWg9kaDolga6e9Ubif14zg/ZFkPM4zYDFdLKonQkMCR7lgSOuGAUxMIRQxc2tmHaJIhRMakUTwtzL86R24niu492elsqX0zgK6AAdomPkoXNURjeogqqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7A+vgGZ/5bn</latexit><latexit sha1_base64="9CGXH8JhKZRUkuoZFq4XGt1czks=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgKiSi6LLoQpcV7AOaWCaTaTt0JgkzN4USiht/xY0LRdz6Fe78G6cPRFsPXDiccy/33hOmgmtw3S9rYXFpeWW1sFZc39jc2rZ3dms6yRRlVZqIRDVCopngMasCB8EaqWJEhoLVw97VyK/3mdI8ie9gkLJAkk7M25wSMFLL3r/2NZfYj5gA4veJSrv8Pneds2HLLrmOOwb+Id4sKaEpKi37048SmkkWAxVE66bnphDkRAGngg2LfqZZSmiPdFjT0JhIpoN8/MIQHxklwu1EmYoBj9XfEzmRWg9kaDolga6e9Ubif14zg/ZFkPM4zYDFdLKonQkMCR7lgSOuGAUxMIRQxc2tmHaJIhRMakUTwtzL86R24niu492elsqX0zgK6AAdomPkoXNURjeogqqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7A+vgGZ/5bn</latexit>
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mathematical description presented by Donev et al. [14]. An
important consequence of this result is that static packings of
frictionless ellipses at jamming onset (!φ = 0) will display
nonlinear response even in the limit of infinitesimal pertur-
bations (δ → 0). This source of nonlinearity is in addition to
contact breaking (and reforming) that occurs in static packings
near jamming onset [22].

In this paper, we investigate how the mechanical stability
of static packings of ellipsoidal particles is modified at finite
compression (!φ > 0). For example, when a system at finite
!φ is perturbed by amplitude δ along ê0, do quadratic terms
in δ arise in the total potential energy or do the contributions
remain zero to second order? If quadratic terms are present,
do they stabilize or destabilize the packings (i.e., are the
coefficients of the quadratic terms positive or negative), and
how do the lowest frequency modes of the dynamical matrix
scale with !φ and aspect ratio? The answers to the these
questions are important because they determine the width of
the linear response regime for static packings of ellipsoidal
particles at nonzero compression.

This paper presents several key results for static packings
of ellipsoidal particles at finite compression (!φ > 0) for
systems in both two and three dimensions. First, the stiffness
matrix H possesses 2N (ziso − z) eigenmodes ê0 with zero
eigenvalues even at finite compression. Second, the modes
ê0 are nearly eigenvectors of the dynamical matrix (and
the stress matrix −S), with deviations from the dynamical
matrix eigenvectors êDM

0 that scale as 1 − êDM
0 · ê0 ∝ !φ2. In

addition, the eigenvalues of −S scale as c!φ, with c > 0,
so that finite compression stabilizes packings of ellipsoidal
particles [15]. In contrast, for static packings of spherical
particles, the stiffness matrix H contributions to the dynamical
matrix stabilize all modes (and the contributions from −S are
destabilizing) near jamming onset [14]. Third, at jamming
onset, the harmonic response of packings of ellipsoidal
particles vanishes, and the total potential energy scales as
δ4 for perturbations by amplitude δ along these “quartic”
modes, ê0. Our findings illustrate the significant differences
between amorphous packings of spherical and ellipsoidal
particles.

The remainder of the manuscript will be organized as
follows. In Sec. II we describe the numerical methods that
we employed to measure interparticle overlaps, generate static
packings, and assess the mechanical stability of packings
of ellipsoidal particles. In Sec. III we describe results from
measurements of the density of vibrational modes in the
harmonic approximation, the decomposition of the dynamical
matrix eigenvalues into contributions from the stiffness and
stress matrices, and the relative contributions of the transla-
tional and rotational degrees of freedom to the vibrational
modes as a function of overcompression and aspect ratio
using several packing-generation protocols. In Sec. IV we
summarize our conclusions and provide promising directions
for future research. We also include two appendices. In
Appendix A, we show that the formation of new interparticle
contacts affects the scaling behavior of the potential energy
with the amplitude of small perturbations along eigenmodes
of the dynamical matrix. In Appendix B, we provide analytical
expressions for the elements of the dynamical matrix for
ellipse-shaped particles in 2D.

II. METHODS

In this section we describe the computational methods
employed to generate static packings of convex, anisotropic
particles, i.e., ellipses in 2D and prolate ellipsoids in 3D with
aspect ratio α = a/b of the major to minor axes (Fig. 1),
and analyze their mechanical properties. To inhibit ordering
in 2D, we studied bidisperse mixtures (2-to-1 relative number
density), where the ratio of the major (and minor) axes of
the large and small particles is al/as = bl/bs = 1.4. In 3D,
we focused on a monodisperse size distribution of prolate
ellipsoids. We employed periodic boundaries conditions in
unit square (2D) and cubic (3D) cells and studied systems
sizes in the range from N = 30 to 960 particles to address
finite-size effects.

A. Contact distance

In both 2D and 3D, we assume that particles interact via the
following pairwise, purely repulsive linear spring potential

Vij (rij /σij ) =
{

ε
2

(
1 − rij

σij

)2
rij ! σij

0 rij > σij ,
(1)

where ε is the characteristic energy of the interaction, rij is
the center-to-center separation between particles i and j , σij is
the orientation-dependent center-to-center separation at which
particles i and j come into contact as shown in Fig. 2, and
the total potential energy is V =

∑N
i=1 Vij . Below, energies,

lengths, and time scales will be expressed in units of ε, l =√
I/m, and l

√
m/ε, respectively, where m and I are the mass

and moment of inertia of the ellipsoidal particles.
Perram and Wertheim developed an efficient method for

calculating the exact contact distance between ellipsoidal
particles with any aspect ratio and size distribution in 2D
and 3D [23–25]. In their formulation, the contact distance

a

b

a

b

(b)

(a)

FIG. 1. (Color online) (a) Ellipses in 2D with aspect ratio α =
a/b defined as the ratio of the major to minor axis and (b) prolate
ellipsoids in 3D where α is the ratio of the polar to equatorial lengths.
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structure (Fig. 1). In the simple basin scenario, force-bearing
neighbours at jamming should be fully determined immediately
on leaving the equilibrium liquid; in the meta/sub-basin scenario,
that determination should only occur once sufficiently deep in the
glass for transitions between sub-basins to be fully suppressed; in
a fractal phase, by contrast, the contacts should be gradually
determined as jamming is approached. To test this scenario, we
consider a glass configuration at pressure pinit. Starting from this
configuration, we perform several independent compressions up
to pf¼ 1010 and for each compressed configuration we measure
the force network. We obtain a set of contact variables f að Þ

ij , which
are set to unity if particles i and j form a force-bearing contact in
configuration a and to zero otherwise. The average of hf að Þ

ij f bð Þ
ij i

over pairs ab of compressed configurations and over contacts ij
provides a measure of similarity between the force networks. The
fact that this quantity increases smoothly on increasing pinit
indicates that the force network is only partially encoded in the
initial configuration, in support of the fractal landscape scenario
(Fig. 3a and Supplementary Note 2).

Criticality of the jamming transition. The equations that
describe the marginal phase are formulated in terms of the caging
order parameter D(y) and the pair correlation function g(r),
which also encodes the probability distribution of forces in the
packing. On approaching the J-line, that is, as a hard sphere glass
approaches p-N, these equations develop a scaling regime
(Fig. 3d) that is characterized by three main critical exponents: y
for the weak forces, a for the quasi-contacts and k for D itself. A
(non-trivial) generalization of the approach developed for the SK

model55 allows us to obtain theoretical values for these exponents
(Supplementary Note 1). Interestingly, the condition that fixes
their value is precisely equivalent to the marginal stability
condition. The theory therefore predicts that the criticality of the
jamming transition directly follows from its location inside the
marginal phase.

A striking signature of marginality is the scaling of the inner-
most basin width captured by the Edwards-Anderson cage size
DEABp$ k. Although k¼ 3/2 was proposed in earlier
studies23,25,56, the theory predicts a slightly smaller k¼ 1.41574
that is in remarkable agreement with our numerical results
(Fig. 3c). Because single-particle caging by immediate neighbours
(a simple Einstein model for glasses) would give k ¼ 2 (ref. 56),
ko2 implies that fluctuations near jamming are divergently
larger than for independent vibrations, in support of their
cooperative nature25,56. Note that if one ignores the fractal phase,
an explicit computation erroneously gives k¼ 1 (ref. 36). Also,
note that the exponent k controls the fractal dimension of the
basins, as discussed above.

The pair correlation function g(r) bears a signature of the
criticality at the jamming transition. The theory predicts,
consistently with the analysis of ref. 57, that when p-N, g(r)
develops an isostatic contact peak characterized by a scaling
function F (l)%g(r)/g(1) for l¼ (r$ 1)p (Fig. 4 and
Supplementary Note 1). It also predicts that the scaling function
of the contact peak decays as F (l)Bl$ 2$ y at large l. The
distribution P(f) of inter-particle forces in the packing, which is
related to the scaling function of the contact peak by F lð Þ ¼R1
0 df f P fð Þe$ lf (refs 18,40,57), thus also decays as a power law

P(f)Bf y at small forces. Note that, as observed in ref. 58, this
phenomenon is closely related to what happens to the
distribution of frozen fields in the SK model59, which is
thought to explain the Coulomb gap in interacting electron
systems47. Beyond the contact peak, the slower decay of pair
correlation function follows another power-law g(r)B(r$ 1)$ a

that describes the abundance of quasi-contacts. These scalings of
g(r) are crucial for determining the mechanical stability of
packings48,58. Perturbing a packing breaks some contacts with
small forces, while also forming new contacts from what
previously were quasi-contacts. On the basis of this observation,
a scaling relation for mechanical stability a¼ 1/(2þ y) can be
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Figure 3 | Force network and position overlaps in the fractal basin.
(a) Overlap between the force network edges fij¼0, 1 that connect two
particles i and j in two glass configurations a and b (at pressure pf¼ 1010),
obtained by independent compression of the same initial configuration at
initial pressure pinit (Supplementary Note 2). (b) Time-evolution of the
mean-square displacement D(t) for glasses at p ¼ 102, 103, 104, 105, 106,
107 and 108 in d¼4. The solid line indicates the ballistic dt2 behaviour.
The long-time value is the cage size dDEA. (c) The pressure evolution of the
cage size DEA in various dimension closely follows a power-law Bp$k with
the theoretical value k ¼ 1.41575. (d) Analytical results for the order
parameter D(y) at 2dj=d ¼ 10. Increasing the cutoff ymaxBp indicates that
the scaling regime D(y)By$ k extends to all y. (Supplementary Note 1)
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Figure 4 | Pair correlation function close to jamming. Scaling of the
contact peak of the pair correlation g(r). The theory predicts that
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numerical data for g(r) in d¼4 obtained at several pressures p¼ 104,
105,y, 1012; the full line is the theoretical prediction.
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structure (Fig. 1). In the simple basin scenario, force-bearing
neighbours at jamming should be fully determined immediately
on leaving the equilibrium liquid; in the meta/sub-basin scenario,
that determination should only occur once sufficiently deep in the
glass for transitions between sub-basins to be fully suppressed; in
a fractal phase, by contrast, the contacts should be gradually
determined as jamming is approached. To test this scenario, we
consider a glass configuration at pressure pinit. Starting from this
configuration, we perform several independent compressions up
to pf¼ 1010 and for each compressed configuration we measure
the force network. We obtain a set of contact variables f að Þ

ij , which
are set to unity if particles i and j form a force-bearing contact in
configuration a and to zero otherwise. The average of hf að Þ

ij f bð Þ
ij i

over pairs ab of compressed configurations and over contacts ij
provides a measure of similarity between the force networks. The
fact that this quantity increases smoothly on increasing pinit
indicates that the force network is only partially encoded in the
initial configuration, in support of the fractal landscape scenario
(Fig. 3a and Supplementary Note 2).

Criticality of the jamming transition. The equations that
describe the marginal phase are formulated in terms of the caging
order parameter D(y) and the pair correlation function g(r),
which also encodes the probability distribution of forces in the
packing. On approaching the J-line, that is, as a hard sphere glass
approaches p-N, these equations develop a scaling regime
(Fig. 3d) that is characterized by three main critical exponents: y
for the weak forces, a for the quasi-contacts and k for D itself. A
(non-trivial) generalization of the approach developed for the SK

model55 allows us to obtain theoretical values for these exponents
(Supplementary Note 1). Interestingly, the condition that fixes
their value is precisely equivalent to the marginal stability
condition. The theory therefore predicts that the criticality of the
jamming transition directly follows from its location inside the
marginal phase.

A striking signature of marginality is the scaling of the inner-
most basin width captured by the Edwards-Anderson cage size
DEABp$ k. Although k¼ 3/2 was proposed in earlier
studies23,25,56, the theory predicts a slightly smaller k¼ 1.41574
that is in remarkable agreement with our numerical results
(Fig. 3c). Because single-particle caging by immediate neighbours
(a simple Einstein model for glasses) would give k ¼ 2 (ref. 56),
ko2 implies that fluctuations near jamming are divergently
larger than for independent vibrations, in support of their
cooperative nature25,56. Note that if one ignores the fractal phase,
an explicit computation erroneously gives k¼ 1 (ref. 36). Also,
note that the exponent k controls the fractal dimension of the
basins, as discussed above.

The pair correlation function g(r) bears a signature of the
criticality at the jamming transition. The theory predicts,
consistently with the analysis of ref. 57, that when p-N, g(r)
develops an isostatic contact peak characterized by a scaling
function F (l)%g(r)/g(1) for l¼ (r$ 1)p (Fig. 4 and
Supplementary Note 1). It also predicts that the scaling function
of the contact peak decays as F (l)Bl$ 2$ y at large l. The
distribution P(f) of inter-particle forces in the packing, which is
related to the scaling function of the contact peak by F lð Þ ¼R1
0 df f P fð Þe$ lf (refs 18,40,57), thus also decays as a power law

P(f)Bf y at small forces. Note that, as observed in ref. 58, this
phenomenon is closely related to what happens to the
distribution of frozen fields in the SK model59, which is
thought to explain the Coulomb gap in interacting electron
systems47. Beyond the contact peak, the slower decay of pair
correlation function follows another power-law g(r)B(r$ 1)$ a

that describes the abundance of quasi-contacts. These scalings of
g(r) are crucial for determining the mechanical stability of
packings48,58. Perturbing a packing breaks some contacts with
small forces, while also forming new contacts from what
previously were quasi-contacts. On the basis of this observation,
a scaling relation for mechanical stability a¼ 1/(2þ y) can be
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Figure 3 | Force network and position overlaps in the fractal basin.
(a) Overlap between the force network edges fij¼0, 1 that connect two
particles i and j in two glass configurations a and b (at pressure pf¼ 1010),
obtained by independent compression of the same initial configuration at
initial pressure pinit (Supplementary Note 2). (b) Time-evolution of the
mean-square displacement D(t) for glasses at p ¼ 102, 103, 104, 105, 106,
107 and 108 in d¼4. The solid line indicates the ballistic dt2 behaviour.
The long-time value is the cage size dDEA. (c) The pressure evolution of the
cage size DEA in various dimension closely follows a power-law Bp$k with
the theoretical value k ¼ 1.41575. (d) Analytical results for the order
parameter D(y) at 2dj=d ¼ 10. Increasing the cutoff ymaxBp indicates that
the scaling regime D(y)By$ k extends to all y. (Supplementary Note 1)
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Figure 4 | Pair correlation function close to jamming. Scaling of the
contact peak of the pair correlation g(r). The theory predicts that
in the limit p-N one has g(r)/g(1)¼F (l) with l¼ (r$ 1)p. Points are
numerical data for g(r) in d¼4 obtained at several pressures p¼ 104,
105,y, 1012; the full line is the theoretical prediction.
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<latexit sha1_base64="aDErBdaPQwuI7HMBqV77vwfXxRo=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7FjRMMEDwWJGsHVSU1X0eXDWK5X9qj8DWiZBTsqQo94rfXX7kqQJFZZwbEwn8JUNM6wtI5xOit3UUIXJCA9ox1GBE2rCbHbtBJ06pY9iqV0Ji2bq74kMJ8aMk8h1JtgOzaI3Ff/zOqmNr8OMCZVaKsh8UZxyZCWavo76TFNi+dgRTDRztyIyxBoT6wIquhCCxZeXSfOiGvjV4P6yXLvJ4yjAMZxABQK4ghrcQR0aQOARnuEV3jzpvXjv3se8dcXLZ47gD7zPH02Djkc=</latexit><latexit sha1_base64="aDErBdaPQwuI7HMBqV77vwfXxRo=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7FjRMMEDwWJGsHVSU1X0eXDWK5X9qj8DWiZBTsqQo94rfXX7kqQJFZZwbEwn8JUNM6wtI5xOit3UUIXJCA9ox1GBE2rCbHbtBJ06pY9iqV0Ji2bq74kMJ8aMk8h1JtgOzaI3Ff/zOqmNr8OMCZVaKsh8UZxyZCWavo76TFNi+dgRTDRztyIyxBoT6wIquhCCxZeXSfOiGvjV4P6yXLvJ4yjAMZxABQK4ghrcQR0aQOARnuEV3jzpvXjv3se8dcXLZ47gD7zPH02Djkc=</latexit><latexit sha1_base64="aDErBdaPQwuI7HMBqV77vwfXxRo=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7FjRMMEDwWJGsHVSU1X0eXDWK5X9qj8DWiZBTsqQo94rfXX7kqQJFZZwbEwn8JUNM6wtI5xOit3UUIXJCA9ox1GBE2rCbHbtBJ06pY9iqV0Ji2bq74kMJ8aMk8h1JtgOzaI3Ff/zOqmNr8OMCZVaKsh8UZxyZCWavo76TFNi+dgRTDRztyIyxBoT6wIquhCCxZeXSfOiGvjV4P6yXLvJ4yjAMZxABQK4ghrcQR0aQOARnuEV3jzpvXjv3se8dcXLZ47gD7zPH02Djkc=</latexit><latexit sha1_base64="aDErBdaPQwuI7HMBqV77vwfXxRo=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7FjRMMEDwWJGsHVSU1X0eXDWK5X9qj8DWiZBTsqQo94rfXX7kqQJFZZwbEwn8JUNM6wtI5xOit3UUIXJCA9ox1GBE2rCbHbtBJ06pY9iqV0Ji2bq74kMJ8aMk8h1JtgOzaI3Ff/zOqmNr8OMCZVaKsh8UZxyZCWavo76TFNi+dgRTDRztyIyxBoT6wIquhCCxZeXSfOiGvjV4P6yXLvJ4yjAMZxABQK4ghrcQR0aQOARnuEV3jzpvXjv3se8dcXLZ47gD7zPH02Djkc=</latexit>

Power law = critical phenomena!!!

Spherical particles
Power-law



The contact number increases with the aspect ratio as
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FIG. 8. �zJ for n = 2 and several N . (a) Markers denote
the numerical results. (b) Scaling plot for the same data.
Black solid line and gray dashed line denote �zJ / �1/2 and
�zJ = 2/Nnr, respectively

FIG. 9. �zJ for N = 1024 and n = 2, . . . , 5. Markers denote
the numerical results, and solid lines denote �zJ / �1/2.

In Fig. 8 (b), we test the above scaling. A good scaling
collapse confirms Eq. (40). Also, we find that �zJ !

2/Nnr for N2
nr� ! 0, see the dashed horizontal line in

Fig. 8 (b). This means that the system has just one extra
contact than the number of degrees of freedom, which is
also consistent with the previous finite size analysis of
frictionless disks [23].

B. n dependence for N = 1024

Now we focus on the data of the largest size N =
1024. We only show the results for �zJ � 1/N so that
the finite N e↵ects do not appear. In Fig. 9, we plot
our numerical results of �zJ for n = 2, . . . , 5. We find
that �zJ / �1/2 for all n, which confirms the mean-field
prediction Eq. (14).

IX. GAP DISTRIBUTION

In this section, we discuss the gap distribution g(h) at
'J . To improve the statistics, instead of g(h) itself, we
observe the cumulative distribution function:

Z(h) =

R h
0 g(h)dh

R hcut

0 g(h)dh
. (42)

By definition Z(0) = 0 and Z(hcut) = 1. We set hcut = 2,
which is large enough to observe the scaling behavior. In
Fig. 10 (a–d), we show our numerical results of Z(h)
for n = 2, . . . , 5. We find that for small � and h,
Z(h) exhibits the power-law Z(h) ⇠ h1�� , suggesting
g(h) ⇠ h�� . On the contrary, for large �, Z(h) ex-
hibits the liner behavior Z(h) ⇠ h for h ⌧ 1, suggesting
g(h) ⇠ h0. These results are consistent with the mean-
field prediction Eq. (15).
By using Eq. (15), we can deduce the scaling form of

Z(h) as [20]

Z(h) ⇠ �1/2Z̃(��µh), (43)

where Z̃(x) satisfies

Z̃(x) ⇠

(
x x ⌧ 1

x1�� x � 1
. (44)

In Fig. 10 (e–h), we test the above equation. We find a
reasonable data collapse.

X. VIBRATIONAL DENSITY OF STATES

Finally, we investigate the vibrational density of states
D(!) at 'J . We define the Hessian of the interaction
potential as

HXiYj =
@2VN

@Xi@Yj
= KXiYj + TXiYj ,

KXiYj =
X

i<j

v00(hij)
@hij

@Xi

@hij

@Yj
,

TXiYj =
X

i<j

v0(hij)
@2hij

@Xi@Yj
, (45)

where Xi 2 {ri, ✓i} and Yj 2 {rj , ✓j}. At the jamming
transition point, v0(hij) = 0, and thus

HXiYj ! KXiYj

= �ij
X

k 6=i

⇥(�hik)
@hik

@Xi

@hik

@Yi
+ (1� �ij)⇥(�hij)

@hij

@Xi

@hij

@Yj
.

(46)

Using the eigenvalues of HXiYj , {�n}n=1,...,3N , D(!) is
calculated as

D(!) =
1

3N

3NX

n=1

�(! �

p
�n). (47)

Contact number for n=2

Numerics
Non-spherical particles

Contact number
Non-spherical particles

zJ(Δ) − zJ(0) ∼ Δ1/2

z J
(Δ

)−
2d



To simplify the problem, we consider spherical particles

wikipedia.org/wiki/Spherical_cow

Spherical particles
Motivation


