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Frustration of jostling electrons on triangular lattices:
- quantum charge glass and quantum spin liquid -
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1. Quantum charge glass
2. Quantum spin liquid

2'. Doped quantum spin liquid

Kazushi Kanoda
Applied Physics, University of Tokyo



Organic materials = Physics of interaction and geometry

Various in-plane structures
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Diverse correlation phenomena
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Electron glass

v' Quantum nature
v Controllable lattice gecometry
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Hallmarks of Glass

- Slow dynamics
- Non-equilibrium

- Short or middle-range correlation



Relaxation time (s)
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Electronic crystallization: p and NMR
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Electronic crystallization: Raman spectroscopy

0-(ET),RbZn(SCN), Time evolution of
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Spaciotemporal observation of electronic crystallization: classical glass
CO Fraction ¢

TTT diagram
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From classical to quantum charge glass

Observation time scale

1Eobs >> 1Ethermal >>>> 1Eglass
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Discussion | Energy landscape
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Resistivity (QQcm)
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4. Frustration driven quantum melting of CO/CG
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Quantum spin liquid

Anderson’ idea of spin liquids:
Resonating Valence Bond (RVB) state

\

)
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Spin frustration
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Highly degenerate spin
configurations 2> QSL

In analogy with benzene




Quantum spin liquid (QSL) candidates with a triangular lattice

K-(ET),Cu,(CN), B'-EtMe;Sb[Pd(dmit),],
Kato, RIKEN
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6 K anomaly in spin degrees of freedom; ESR and NMR

EPR

Paramagnetic spins die
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6K-anomaly in x-(ET),Cu,(CN),

Thermal expansion coefficient
Manna et al.,, PRL 104 (2010) 016403

Specific heat

S. Yamashita et al.,
Nature Phys. 4 (2008)
459

Ultrasound velocity
Poirier et al.,

Thermal conductivity

M. Yamashita et al.,
Nature Phys. 5 (2009) 44




To make Mott-localized electrons mobile,

pressurize the system dope the system

allow double occupancies make vacancies
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Mott metal-insulator transition

- competition between U and W -

Mott phase diagram
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Quantum critical scaling

Time scale of fluctuations

- Quantum fluctuations & =&?=|dP| %
- Thermal fluctuations L= h/kgT

R:(T)

R(T,0P)/RAT) > Al &, /L) = L T/|OP|*)

One-parameter scaling

T/ |6P|?¥= const.

z. dynamical critical exponent

v: critical exponent of correlation length

correlation length
&= 15P|

Quantum correlation time

e, =&=|5P|
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Material-independent universal quantum critical fluid (zv=0.5-0.7)
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Phase diagram of QCD

Temperature T

— X CFLKD, Crystalline CSC
Nuclear Superfluid  pMeson supercurrent Baryon Chemical Potential s
Gluonic phase, Mixed phase

Fukushima and Hatsuda, Rep. Prog. Phys. 74 (2011) 014001



Two ways to make Mott-localized electrons mobile,

pressurize the system dope the system

make vacancies

©% " ¥y

4
% Vancancy g
e _.

allow double occupancies

¥ % ¥y

% No vancancies g
¥ y’

v ¥




Doped spin liquid candidate k-(ET),Hg, 3oBrg (11% hole doping)

K-(ET),Hg, 59Br5
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Phase diagram : non-doped and doped spin liquid materials
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Quantum critical “phase”

Wakamatsu et al., arXiv:2201.10714
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BEC to BCS crossover in a doped QSL candidate k-(ET),Hg, 3oBrg
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unpublished

Preformed Cooper pairs in a doped QSL candidate, x-(ET),Hg, 34Brg

Superconductivity = (Cooper pairing)x(BEC)
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Organic Conductor a-(BEDT-TTF),l,

e-crystal Massless Dirac electrons

Getting to the point !

> b % Inversion center

Tilted Dirac cones
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Site-selective 13C-NMR probes reshaping of Dirac cone
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Unscreened Long-range Coulomb Interactions

Logarithmic divergence of v, at low energies

Isotropic tilted cone Anisotropic tilted cone

? . [v(k) = v(l + % ln(A/k)), AJk > 1} Ec(@)=h (Wo q+< vazqf + vyzqyz)

S. Katayama et al., Eur. Phys. J. B 67 (2009)

A. A. Abrikosov et al., JETP 32 (1971)

RPA self energy £,

Massless Dirac electrons
annnns + -vv-Om
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[cf. Isobe & Nagaosa, JPSJ 81 (2012): using HF exchange term Q j

RG equations (leading order in 1/N; N >> 1)
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mass generation by interactions
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Strongly correlated Massless Dirac electrons

Dirac cone reshaping Diverging Korringa
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graphene a-(BEDT-TTF),l,

¢ <

3 energy b energy C energy d energy
Kk N/ N/
gap
kx O
Dirac cone reshaping ~ Dynamical mass  Spontaneous mass
generation generation

Electron correlation



summary

Diverse manifestations of electron correlation
In various molecular arrangements

Massless Dirac electrons Electronic Xtal/glass

Dirac cone reshaping
Unusual spin correlation
Dynamic mass generation

Non-equilibrium
Slow dynamics
Crystal growth
Quantum glass

\

Soft matter physics

Particle physics

\ Mott physics N RTOMEE— DDA T

Quantum Mott criticality ETOEIDELNDHEMNSEENS
Preformed Cooper pairs

Spin liquid .
BEC-BCS crossover LTIFEMN-TLVS
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