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Hybrid quantum systems using collective modes
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e.g., A. A. Clerk et al., Nature Physics 16, 257 (2020)






‘Superconducting qubit
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Chiorescu, Nakamura, Harmans, Mooij, Science (2003)
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Coherent manipulation of quantum states in circuits

Nakamura, Pashkin, Tsai, Nature (1999)
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LC resonator Josephson junction resonator

Josephson junction = nonlinear inductor
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Inductive energy = confinement potential
charging energy = kinetic energy = quantized states




Superconducting gubit — nonlinear resonator
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e Superconductivity = low-loss
» Josephson effect = Strong nonlinearity
 Macroscopic size = Strong coupling
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66 qubits

54 qubits 127 qubits
Google Al Quantum IBM USTC
Nature 574, 505 (2019) https://www.ibm.com/blogs/think/jp-ja/wp- Phys. Rev. Lett. 127, 180501 (2021)
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) Double-sided power spectral density
Fermi’s golden rule of the noise in the environment
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free evolution of the qubit phase
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Quantum nondemolition (QND) detection

S. Kono et al. Nature Physics 14, 546 (2018).
See also, J.-C. Besse et al., PRX 8, 021003 (2018). ETH Zurich
A. Reiserer et al. Science 342, 1350 (2011) MPQ



Circuit quantum electrodynamics
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Circuit QED in dispersive regi
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Optimal condition for large bandwidth Kex = 2X

Controlled m-phase gate depending on gubit state
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Optimal condition for large bandwidth Kex = 2X

Controlled m-phase gate depending on photon state

+)
@ g —%W«-'—[ ]

<> Pulse
bandwidth @ Reflection

o HH ]




‘Quantum efficiency
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- Dark counts due to qubit dephasing
Pac =0.0147

- Quantum efficiency
n =0.84

* Internal loss of the cavity
e Dephasing
e Mismatch of k and 2y
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Corrected F=0.98
for nger = 0.43

F=0.84

Heralded
single photon generation







Magnon is a quantum of collective spin excitation
INn a magnetically ordered system

Can we control and detect a single magnon
(with an angular momentum of 1#%)

IN @ macroscopic object?

Yes, we can, with an aid of a superconducting qubit.
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» Ferrimagnetic insulator
* Narrow FMR line
» Transparent at infrared

SB . .
» High Curie temperature: ~550 K
e Large spin density: 2.1x10%2 cm3
Spintronics
Microwave oscillators Optical isolators

Kajiwara et al.
CANDOX Corporation FDK Corporation Nature 2010




Low temperature ~ 10 mK; ~0 thermal magnon & photon
Microwave power: ~0.9 photons in cavity

0.5-mm sphere ,
Y. Tabuchi et al. PRL 113, 083603 (2014)
L









Qubit-magnon coupling
mediated by virtual photon excitation
In cavity

ﬂq—m/h ~ Jg-m (&In(f— + CA’Jm(ﬂ—)
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Strong coupling regime  gg-m = VYqs Ym

Y. Tabuchi et al. Science 349, 405 (2015)
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Detected excited state probability
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Y. Tabuchi et al. unpublished
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Strong dispersive regime 2| Xq—m| 2> Yq5 Ym
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D. Lachance-Quirion et al. Sci. Adv. 3, 1603150 (2017).
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D. Lachance-Quirion et al.
Sci. Adv. 3, 1603150 (2017).

Model: J. Gambetta et al. Phys. Rev. A 74, 042318 (2006) Yale
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D. Lachance-Quirion et al. Applied Physics Express 12, 070101 (2019);

See also D. Lachance—guirion et al. Sci. Adv. 3I e1603150 ‘2017}



Single-shot

D. Lachance-Quirion et al. Science 367, 425 (2020)
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S ~ 107° magnon/vHz @1 Hz

S. Wolski et al. PRL 125, 117701 (2020)
I TTI—————SSSSSShhhhhhhh



Summary

Quantum magnonics with ferromagnet
« Strong coupling with superconducting qubit
« Vacuum Rabi splitting/oscillations
* Magnon-number-resolving spectroscopy
« Single-shot detection of a magnon
» Dissipation-based gquantum sensing

Prospects
* Investigation of magnon decoherence
» Generation of non-classical magnon states
» Applications of magnon quantum sensing
* Axion detection?

Review:
D. Lachance-Quirion et al.
Applied Physics Express 12, 070101 (2019)
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