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SHO
MIntroduction

* connections between Quantum Gravity, cond-mat and Ql

 Review of the SYK model

@Model for SYK teleportation

T.Nosaka (Riken) - TN,JHEP 02 (2020) 081, arXiv 1912.12302

T.Nosaka - TN,JHEP 02 (2021) 150, arXiv 2009.10759
(understand QI and QG using cond-mat)

BSYK Lindbladian
A.Kulkarni (Princeton U)- TN - S.Ryu (Princeton U), arXiv 2021.13489

(solvable model of strongly coupled open system
motivated from QG)
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Black Holes (BHs) and information

Black Holes:
Entropy = Area of Horizons

BH entropy formula
T72vIR—ILOITY NOE—RR

[Bekenstein 72] [Hawking 74]

Spy = kp—r ~ ANFROEHR s o
462 hG N _35
. tp =\ =5+ ~ 1616 x 10~*m

-7 v I R—)LZ&H R TEIRADAKIL

—Holography[RIE/\ [tHooft 93] [Susskind 94]




Entanalement and Geometry:

Law of Gravity (Einstein Equation):

1 M
Ry = 59w R = 871G N T, ——  é(r) =Gy Tm
ITRIVF—LFDNRFZEORA(EANT Vv IV)ZRE
Matter without
Entangled matter Entanglement

Gravitational Collapse

BH BH

Are they the same two black holes?



Entanalement and Geomet

[Raamsdonk, 10]
Proposal: ER = EPR [Maldacena-Susskind, 13]

IVIVITIAY NE BZEDODREHLD (T —LR—)L)IEZE

(Entangled Black holes are geometrically connected in the interior)

Matter without
Entangled matter Entanglement

010 @ 0

dlsconnected

Area = Entanglement Entropy [Ryu-Takayanagi, 06]




uivalence of wormholes and entangled matter

Wormhole Entangled matter




Connection between Ql and cond-mat:

=
gl‘

=T HH YL IE

There iIs much literature...



Entanglement in condensed matter:

Quantum information plays an important role in condensed matter

#: Toric code Hpo = —JZA _ JZB

[Kitaev 97

]

- EE= \/"I"{)

1 )L Dorder parameter [Levin-Wen 04] [Kitaev-Preskill 05]

- #@81R U 7=Ground states = logical qubits, encoded in entangled state

 Wilson loops = logical operators

- Anyon filli

'C = error

- Gap = robustness against errors

9



Strong coupled system : Strange Metals

Example of Hole doped CuQO2

A A b ¢
\\ . /
\ : T \\ 4
T : T 2 \ Strange ’
: ; - Fluctuating,  “ Metal p
“\ p~T o paired Fermi \ ¢ Large
<L \ : o pockets \ I' Fermi
= ) S surface
— ’ . *
p(T) . .’ :
S-shaped * o pTHT ! :
. o + d-wave
= ‘ p ~ T" Tsdwl SC
u.ptums (1<n<2) TFL? . ’ . . (Large Fermi surface;
Al Inp(T) . ANBIEUng, & . g possible VBS and/or
4 paired Fermi 7/ :
F ’ , . Ising nematic order
M d-wave SC T p~ T? pockets )
’ >
1 1 1 1 ] )
0 005 01 015 02 025 0.3 / . (X ) s ( T 1) - T
Hole doping x

(Spin density wave (SDW))

W=

 No quasi particle excitation (7 =)L 2t

K&
CKBIET I RAEDIRDE

\.t.ﬁ)

- Highly entangled states |

L)

(Pictures taken from Sachdev 0907.0008 )
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Connection between QG and cond-mat:

gl

27

There much literature on AdS/CMT...
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SYK model: [Sachdev-Ye 93] [Kitaev 14,15]

N Majorana fermions {Vi, i} =0di; (dimH = 2%)
( = qubits on horizon)

J
Hamiltonian: Hoyv i = Z% E Ji1i2---iq¢i1¢i2 ‘e %q /\
11 <i2<---<14 ,
J*(q—1)!
. 2 _

- Similar to Holographic Non Fermi Liquid
(AdS/CMT), concrete Hamiltonian

- Solvable in the large /N limit

- Exact diagonalization at finite /V

- v/ cond-mat Vv quantum information ?general relativity

- Have the 2d dilaton gravity sector

[Maldacena-Stanford, 16] [Maldacena-Stanford-Yang, 16]
12



large N limit:

disorder average & Hubbard-StratonovichZ itz 9 % &

: _
S|IG, X =N long(aT_E)_/dTl/dTQZ(TlaTQ)G(T].)TQ)_%G(Tl)7-2)q

for G(,m2) = - (Yi(m)i(r) and X(ry,72)

— large N Csaddle pointz & % Z & TH#EIT 5

* Numerical solution at q=4 G(7)

—— Exact, numerics
0.4 —— Conformal limit

B8J =200

01l

0 2 4 6 8 10 C 50 100 150 200

v



Universality: Conformal symmetry breaking
- SYK model & fiZ#17= reparametrization (conformal) X34 %= 3 D:

G(11,72) — [f/(ﬁ)f/(ﬁ)]AG(f(ﬁ)af(Tz))

(correlation function)

The effective action for Nambu-Goldstone modes f(7) is

_ Nas ST () 3 ()2
S = j /{f(T)7T} {f(T)7T}_ f/(T) _§(f/(7_))
- [a] USSR DiE LI 2d dilaton gravitylc & F7E
AdS (f(u), 2(u)) \
2 - & B T&E(near extremal)\ DBHD YA+ = 7 X (&

reparametrizationM 5 X J A Tk N3

cutoff [Maldacena-Stanford-Yang, 16]
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Universality: Conformal svymmetrv breakin

4d near extremal black holes

n standard model Holographic Non-Fermi

Liquid (BH in AdS)

\ / SYK model

2d dllatlon gravity
Yve /qb\f (R + 2) + i dp K low energy

\ bdy

Schwarzian action: g — —C/ dud{ f(u), u}
f/// f//
(=2 -5 (%)
reparametrization®“Non Linear Sigma Model” .

Many dynamics are governed by the dynamics of reparametrization

Linear in T resistivity (in high Tc SC) from Schwarzian [Guo-Gu-Sachdev, 20]
15



Traversable wormholes [Gao-Jafferis-Wall, 16]

Entanglement is resource. We can not send messages only with entanglement

Similarly, having wormhole is not enough to send messages

Can we send messages through wormholes? -> traversable wormholes!

A solution can be constructed in the Standard model (smaller than 1/Tev)

iIn a regime where we can use reparametrization (Schwarzian) modes
[Maldacena-Milekhin-Popov, 18]
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SYK traversable wormholes: [Maldacena-Qi 18]

Jr JR
H=Hry + HR + uHny

Traversable
wormholes

znt — Z?p ¢R

oy LI
s pes
5
-

Hopping term
+ Gapped phase = Traversable wormholes

- reparametrization (quantum gravity) mode TiCih TZ 5

- BRI, SYK = Non-Fermi Liquid like phase = 2 BH phase

entropy g=4, cal/=1 (A =105 AT =+0.001) Energy g=4, calJ=1 (A =105, AT = +0.001) Energy gapq 4 U 17 000] (= 10)
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
S e e
[ ] ...I
s, =
] N ]
| e u=0.05(A7<0) | %0 B ]
o) 1=0.05 (AT>0) | ;Q r e u=0.05 (AT<0) ]
T 1 P 0075 u=0.05 (AT>0) - ]
N u=0.1 (AT<0) T " H } 1 ]
Cp=014TS0) | W 1 T 4 p=01(AT<0) ] o Eup(G) ]
. #:0. 16 (AT<0) : 0,080 ; $O00ODO00000O000000000000000000000000000000000000005 MIOI (AT>O) E Egap (Gr) ;
nu o p=0.16 (AT>0) | [ = u=0.16 (47<0) 1
= ] ~0.085 | o u=0.16 (AT>0) ]
ﬁmnrrﬁmnﬂjﬂerDD?juED AAAAAAAAAAAAAAAAAAAAAAA
0.04
T T 2




MiIntroduction

* connections between Quantum Gravity, cond-mat and QI
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@Model for SYK teleportation
@B)SYK Lindbladian
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based on

T.Nosaka (Riken) - TN,JHEP 02 (2020) 081, arXiv 1912.12302
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SYK/Holographic teleportation

[Shiba-TN-Takayanagi-Watanabe, 16]
Entanglement is resource. [Susskind, 16]

With measurements and operations, we can teleport qguantum information

operation

Split space time Measure one side on bottom
Send results by CC Send results by CC
Do quantum operation Do quantum operation on top

19



SYK teleportation [Kourkoulou-Maldacena, 17]

- entangled state: [Gao-Jafferis, 19]

Y

- measurement basis

TFD(B)) = ~2Bn B, ©|En)p

ok—1|Bs) = ispiar |Bs) = (51, ,5x)

|Bs(6)> — <BS‘TFD(6)>
result in pure states in R system

- state dependent deformation

Hsy g — Hget

ETW ETW

brane brane R
Hyet = Hsy x + puHy(8) L / R L /

can teleport the QI of L system

Adding mass term

[cf: AlImheiri-Mousatov-Shanyi, 18] [cf: QET in BH formations, Hotta10]

20



mass deformed SYK model : J [Kourkoulou-Maldacena, 17]
Haet = Hsy x + pHy ()

Hsyr = i2 Z iy iy Wiy Y,

i< <ig
N/2 N
2

Hy(s) =1 S: SkWak—1V2k  (Hy — iZ(5k¢2k—1¢2k + Bi6k): SYK with controller )
k=1

1=1

measurement basis

ok—1|Bs) = iskthar |Bs) 8= (51, ,5n) k=1~ N/2

Bg) : simultaneous eigenstates of spin operators Sk = —2ita, 1124

ground state of the mass term
(cf. stabilizer formalism of quantum error correction)

projected state: |B;(3)) = (Bs|TFD(B)) = e~z Hsv i | Bs)

what we did in SYK teleportation

Try to put | B5(/3)) as the ground state of deformed Hamiltonian

21



Variational approximation by projected state [Nosaka-TN, 19]

- We want to understand how |Gs(i)) and | Bs(5)) are close.

— We use the projected states Bs(5))

as variational ansatz for the GS of the mass deformed SYK
[cf: 1+1d CFT case, Cardy 17]

Bs(8 =0)) is the ground state of the mass term H; ( it — o0 )

- |Bs(8 = 00)) is the ground state of the SYK Hgyx (u— 0 )

- direct computation of the overlap ' / o
[(Gs(1)|Bs(B(1)) | o
B(4) : maximize overlap i e

- at large q limit, the overlap is o
Nl v
‘ <GS(IM)‘BS(6(IM))> ‘ — € q/— 7 0.55—

Ll I Lol I Lol I Lol I Lol
0.001 0.010 0.100 1 10

We can compute using Liouville action



Variational approximation, Schwarzian

- Energy in the trial wave function is

<Bs(5)’Hdef‘Bs(5)> — F e 9 2
(B+(B)|Ba(B)) T 55 /\>
SYK thermal energy SYK thermal correlatorat 7 = —

— vary 3, minimize the trial energy —determine 5 = 3(u)

- For large 8 (small 1), we can use the Schwarzian (quantum gravity)

0.08—————
27‘(‘2055

P _ B+ —— Numerical
SY K 0 52 J 0.06 Conformal limit
Ga(B/2) =ea( ) :
— a2 L 004}
g 2 BT |
(M
B(w) T Jas o

23



Compare observables
(1)Ground state energy FEq(u)

and <BS(5)|Hdef|Bs(6)>

(2)Spin operator expectation value
(Gs(1)|Sk|Gs(p) = —2isxGor(0)

and (Bs(8)|Sk|Bs(8)) = 4G(B/2)°

(3)Energy in the SYK Hamiltonian
(Gs(1)|Hsyx|Gs(1))
and <Bs(5)|HSYK Bs(ﬁ»

- same scaling but different coefft.

iIn conformal limit
- at large q, they perfectly agree

y ‘Gs(ﬂ» IS excited state in SYK

24

(1)

—-0.0120F

—-0.0125}

Eo(u)

—-0.0140

—-0.0145F

(2) ____Spin Operator .EXPePt.’C‘t!O!’l.V?'Ue .....
0.30F e =

(3) Energy in SYK Hamiltonian |
0.0102F )

<Gs(WIHsyk G5 (1)>

—0.0115F =g

—-0.0130F

—-0.0135F

Ground-state Energy

0.000 0.005 0.010 0.015 0.020 0.025 0.030
u

o L 7 2 E

P / — G(>, numerics

= 010;_ ,/ — | Bg(u)>, numerics

L/ --- | Gg(u)>, conformal limit

0-05;-’ | Bs(u)>, conformal limit‘_
L1

0.000 0.005 0.010 0.015 0.020 0.025
7

—0.01046—
—0.01066-
—0.01086-
—0.0110?—

~0.0112f

—0.0114F
0.000 0.005 0.010 0.015 0.020 0.025




Correlation function: numerical solution

G(71,72) = (Vi (11)i(72))

Goff(TL 7'2) — <¢2k—1(’7'1)¢2k(7'2)>

Imaginary Time

exponential decay (gap) at low temperature

Similar to SYK at hight temperature

Real Time

Low temperature

g=4, call=1, u=0.1, T=0.005 (AL, ) = (105, 2000))

02
MU
L B ! \/

02
03

-04

'
-500 0

oscillating behavior

g=4, cal=1, u=005 (A =109

I
0.6 ~,

== G (T'=0.05)
N Gz (T=0.05)
04 G (T=0.001)
| —— Gz (T=0.001)
02
'n
_
0.0 = d
\~\ |
!
| [ i \ A | ) A A A A A |
0.0 0.2 04 0.6 08 10

/B

High temperature
g=4, call=1, u=0.1, T=0.01 ((Ar, Tp) = (105, 2000))

I L
0.2 ‘ -
J ~:
! C/\*JA%”
0.1 - , _
0.2

Re[G7 )
0.3 - Im[G™ )
| - Re[G71z]

~04 -

— Im[G”x]
0.5~
. 4 A A P A A A | b
~300 200 100 0 100 200 300

exponenﬁéldecay



Green’s function in conformal limit at 0 temperature

- Imaginary time correlator in ground state

CM(/L) 2A o _ *7 F(2 o QA)F(A)2 1 I ﬂ 1—12A
Gelr) = ca (jsinh(a(M)T)) )= | TRA + DT(1 — A (2ea) @D 7)
_ 2
Goff,c(T) _ 27;04(#)’“—1 F(;(A)AQ) G—ZQ(H)A|T|2F1 (2A7 QA, 1; 6—2a(M)|T|)

- analytic expression for Euclidean correlators — continue to real time

G~ (u) =Ggliu+e), GS(u)=Gg(iu—e¢)
- Real time correlator in ground state

G~ (ur,u2) = (Wi(u1)Yi(uz)) = e_mACA( - ) — 756)))2A

J sin(a(u; — us

which oscillates, the period is set by the mass gap

_47T

, -+ Is regulated in the full
o o)

_27’(‘

singularity at us — u; =0, -

(UV complete) answer.
26



Dvnamics without deformation: Quantum Quench

- Real time evolution under SYK Hamiltonian

Consider time dependent Hamiltonian Haet(u) = Hsy x + uf(—u)Hyy

2 ()

— Solve the Schwarzian mechanics, L = —

{ Energy  (Gs(w)|Hsyk|Gs(1))
w/

Initial condition is set from f(u) = tan(a(p)u) for uw < 0

The solution Is

209 T ™ 2ntag ['(2A)0(1 — A)*T(1 — 4A)
Flu) = RUNN tanh (ﬁu) 7 a(p) [(A)BD(1 - 2A)
. _ > ¥ JAN 0 4
diagonal correlator: G~ (uq,u2) =€ (5j sinh % (uy — u2))

exactly the same with thermal one!

) Spm exp Val: <Sk’(u)> — <Sk’(0)> (1 4+ ( 20 T 1)2 tanhz(EU)) (COSIll %u)4A
e(A) BT B

27



Excited state properties of mass deformed theory

©=0.1, 910 realizations

To see the quantum chaotic property A :

- R TR LR T SEAIE UEF LI KR R ITLX NP I SILE DT ICE LI TEL X I W T TR A A TP
. : Sl R AR e SRR T R A R T »‘b’vr~~~-:“*r..-‘.h"~”~.e,~:f--;*«:<2"?.-».—-'-?.’_»."i« 333 v
i 0.6 | Sifisismens Bt =N e .
’ R 0 P i N b s e Sy A o T e s e e B o] e D S A
L T B AR IR TR S RS e - oS X ool S et e SRR DT £
: : .

(random matrix property)

by exact diagonalization for /N = 30 |
(match with GUE) |

11111111111111111111111111111111

- Lyapunov exponents at large N w02, 908 reaizaions J AP FALIO

lllllllllllllllllllll

07+ o H®

g=4, call=1 (AL = 105, T, = 2000 (a: A = 2x105, Ty = 105)) o

06 '_ P wi\."-)}i:(,\""‘ i R I R I Sy SRl
' S R )
e 1=0.01 3 : : hihai
u=0.07
u=0.1
e u=0.15

e u=0.17

e
=S

0.5+

g
N

e =03

AL/Cr/B)

0.4~

<
~
T | T

........................

111111111111111111111

e
o

-~

[ eseee®® N
0'0_\\\\\ ! T R N B A ! T R B B | ! T R N B A

! ! ! |
0.1 1 10 100 1000

and high energy states are chaotic = same with SYK
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Gravity interpretation

Quantum Quench
Large excitation = BH

Lose control over
Quantum computer side

Low excitation = Cap off

Couple quantum field
To quantum computer

1)
— N

Black hole
horizon
- — generated
- | ©
- ) [T 1)
Brane With , Brane with information
Quantum information falling
like holographic like holographic
superconductor/insulator Non Fermi Liquid
[Hartnoll-Herzog-Horowitz 08] [Herzog-Kovtun-Sachdev-Son 07]
[Nishioka-Takayanagi-Ryu 09] [Faulkner-Liu-McGreevy-Vegh 09]

Success/Failure of teleportation < phase of matter + dynamics
Falling brane represent information scrambling

29



Importance of state dependent deformation

To escape interiors, we should know

{ correct pair Y2r—1 and Y2k

correct sign Sg
N/2

and correlate |Gs(1)) and Haer = Hsy i +ipt S: Skak—1V2k
k=1

Sign flip — excitation of AE = u| (S:) |

many excitations — evolved by chaotic part of Hamiltonian Hdet

— black hole formation = failure of teleportation

30



Teleportation at late time

- Can we escape interiors of scrambled state e “/sY&1 |G, (1)) ?

— Simple deformation Hgaer does not work.
- deformation including “time reversal’ Hi. = Hsyx +p ) spe svrt g ettsv st
can escape interiors, but e syl g, e syl jg 5 complex operator.
“Size” of operator grows  [Robart-Stanford-Streicher 18] [Qi-Streicher 19]

Each expansion coefficients e "#svxT g etHsvrT = Zzazl T)ti, -+ s,

is very small, highly depends on each realization J;,...; , similar to SFF
[CGHPSSSST 16] [TN 19]
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Compare with Toric code

Toric code

Deformed SYK

code

error

operator

SYK side is close to holographic (HAPPY) code
[Harlow-Pastawski-Preskill-Yoshida, 15]

degenerate ground states

Anyon excitation
(deconfined)
[cf: Fradkin-Shenker 79]

Wilson loops

32

Low excitation (global AdS)
[cf: Almheiri-Dong-Harlow- 14]

Black Hole formation

Bulk operator




MiIntroduction

* connections between Quantum Gravity, cond-mat and QI
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@Model for SYK teleportation
3)SYK Lindbladian

direction: Ql + QG — QI + cond-mat

based on
A.Kulkarni (Princeton U)- TN - S.Ryu (Princeton U), arXiv 2021.13489
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3.Lindbrad SYK

Motivation from Quantum Gravity

- There is an argument that we should also allow bra-ket wormholes
when we consider the density matrix of the universe
[Page, 86] [cf: Anous-Kruthoff-Mahajan, 20]

- wick rotation of traversable wormholes gives such examples

2d Gravity in gravity counterpart (dialton gravity + 2d CFT)

Igrav[gz(]?)a (b] + [CFT [91(32)7 X]

equal
. space slice
equal time
slice S (bbbl el Z 0
wormhole connects bra and ket
CFT [Chen-Gorbenko-Maldacena, 20]

Question: condensed matter application”? SYK counterpart?

Let us consider bra-ket coupling in the SYK: Lindbradian SYK models

34



Schwinger-Keldysh formalism for Lindbladian:

First, we use the state-operator map — — ) —
(Choi—Jamiotkowski isomorphism) p) = 1)
Lindbrad equation:
d 1
P = —ilHsy ke, p(O] + Y _(Lip()L]) — 5 > (LiLi)p p(t) > (LLLy)
k k k
= L(p(1))
Hamiltonian evolution Lindbradian evolution
. — o iHt____ . . ]
O— 00) o) — e |po)

— eth_

35



Models for SYK Lindbladian:  |A Kulkami, TN S.Ryu, 21]

(1)An example of Non Random Jump operators: L; = \/ﬁwz

After channel-state mapping, we get operator similar [Maldacena-Qi 18] model :
. + . q — . i i N
L=—1Hl p+i(—1)2Hgyp — z,uzwg,b_ — ,uE]Lr ® I_

(2)An example of Random Jump operators: L% = Z K%WW

, K2 1<J
(K5 =0 (K5 = <3 a=1~M
| o o
L= —illdy +iHgy o+ 30> S KGR (vielehel + cuhulwie] + _pplyiyl )

a 1<j k<l
Similar to coupled SYK models in [Kim-Klebanov-Tarnopolsky-Zhao,19]

Also similar to Wishart SYK, [lyoda-Katsura-Sagawa,18] SUSY SYK, [Fu-Gaiotto-Maldacena-Sachdev, 16]

- Both models are solvable, strongly coupled Lindbladian at large N

36



Stationary state Green’s function:

At large N limit, the Schwinger-Dyson equation is tractable

G(t)
i decay late I’
0.4 EEEE lm[G44(t)]
Re[G,-(1)]

20 40
-0.2
0.4
-0.6

At late time, Green’s functions show exponential decay

At large q limit with 4 = ,LAL fixed, the system analytically solvable

( 1 1
Gra®) =5 (14 gra(t) e =
++(t) o\ qg++( ) J2 cosh?(alt| +7)

A

o — j\/(%)erl v = arcsinh(%) [ = 27&
37




Lindbladian spectrum: Non Random

p=0.1
Im A
10
05
1
-0.8
0.5
10/
u=0.5
Im A
0.6;
{ _ , ; o.4;
f 3 02f
E 3 :
4 T -~ Rel
%T' i -0.2-
: i |
T f 04
—0.6;

Real-Complex transition?

Re A

p=0.3

ImA

0.5

-0.5

p=0.9

Re A

“+ Re A

[cf: Hamazaki-Kawabata-Ueda, 18]



Stationary state Green’s function: Random

Solvable at large N and M, fixed M/N
G (t) ~ Ae ' sin(wot + ¢)

r “o
8| ' 0.41,
L | @
4] : 0.2}
’ " : @ >
OP.???“-‘~‘A[( 0““‘*“ *“]&
0 4 8 0 2 4 6
K=10
14
1.2
1.0
0
6
4
HOZE N
T

39



Lindbladian spectrum: Random

- Fixed M (number of jumps), increase K (strength of single jump)

Im|[A)

Im{A|

10}

. 0015 -0010 -0.005

-10F

Lemon shape at large K

- Fixed K, increase M

Im[A
10:

L Re[Al

10~

Formation of “island” at large M
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Some comments:

- SYK Lindbradian <« couples SYK model
- stationary SYK Lindbladian «» Ground state of coupled SYK = wormhole
- Solvable at large N, we can read off the “gap” = decay rate

- At large g analytically solvable, a part of spectrum are also available

- Dissipation drives system to infinite temperature,
In particular, we can not use Schwarzian theory (quantum gravity modes)
(similar problem in de Sitter continuation of SYK/BH [Maldacena-Turiaci-Yang, 19] )

41



Conclusion

- Brief review of interplay of cond-mat, quantum gravity and quantum info

* Review of Entanglement and wormholes
* Introduction to SYK model and its quantum gravity sector (Schwarzian)

- Analysis of mass deformed SYK model,used in the context of teleportation

variational approximation by projected states (“continuous tensor networks”)

correlation functions and dynamics
success/failure of teleportation and phases of matters

* Analytic continuation coupled SYK motivated by wormhole counterpart

Braket coupling in Schwinger Keldysh = Lindbladian dynamics
Non Random Jumps = analytic continuation of coupled SYK

Models are solvable at large N

Numerical study of the Lindbladian spectrum
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Future problems

 Real time dynamic in deformed SYK Hamiltonian

» Further study of SYK Lindbladian and their Non-equilibrium phases

[work In progress]

 More on solvable Lindbladian (random t-J, complex SYK etc...)

* (Quantum) Spin glass phase and black holes
[cf:Anous-Haehl, 21]

 Non unitarity evolution in CFT, string theory etc...
[cf: Dijkgraaf-Heidnreich-Jefferson-Vafa, 16]

 More application of Cond-mat — quantum gravity
[cf:talk in Strings by Xiao-Gang Wen 21]

- More application of quantum gravity —quantum information
[cf:Hayden-Penington 20]
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