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①Introduction

②Model for SYK teleportation
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③SYK Lindbladian

・connections between Quantum Gravity, cond-mat and QI

・Review of the SYK model

 (understand QI and QG using cond-mat)

 (solvable model of strongly coupled open system  
  motivated from QG)

今日の話

T.Nosaka - TN,JHEP 02 (2021) 150, arXiv 2009.10759

T.Nosaka (Riken) - TN,JHEP 02 (2020) 081, arXiv 1912.12302

A.Kulkarni (Princeton U)- TN - S.Ryu (Princeton U), arXiv 2021.13489
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Connection between QG and QI:
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Black Holes:  
Entropy = Area of Horizons 

BH entropy formula

4

ブラックホールのエントロピー公式
[Bekenstein 72] [Hawking 74]
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Black Holes (BHs) and information

→ブラックホールを含めた系で第二法則が成立
→Holography原理へ [’t Hooft 93] [Susskind 94]



Entanglement and Geometry:
Law of Gravity (Einstein Equation):

Rµ⌫ � 1

2
gµ⌫R = 8⇡GNTµ⌫ �(r) = GN

Mm

r

Are they the same two black holes?

Matter without 
EntanglementEntangled matter

BH BH

Gravitational Collapse

エネルギーだけが時空の幾何(重力ポテンシャル)を決定
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Entanglement and Geometry:

Proposal: ER = EPR

Matter without 
EntanglementEntangled matter

BH BH

(Entangled Black holes are geometrically connected in the interior)

BH BH

エンタングルメントと 時空のつながり(ワームホール)は等価

[Maldacena-Susskind, 13]
[Raamsdonk, 10]

wormhole

disconnected
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Area = Entanglement Entropy [Ryu-Takayanagi, 06]



Wormhole Entangled matter

= 

Equivalence of wormholes and entangled matter
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Connection between QI and cond-mat:
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There is much literature…



Entanglement in condensed matter:

Quantum information plays an important role in condensed matter

例: Toric code

・EE=トポロジカル相のorder parameter

・縮退したGround states = logical qubits, encoded in entangled state
・Wilson loops = logical operators 

HTC = �J
X

v

Av � J
X

p

Bp
A

v

=
Y

i2v

�x

i

Bp =
Y

i2p

�z
i
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・Gap = robustness against errors

[Levin-Wen 04] [Kitaev-Preskill 05]

[Kitaev 97]

・Anyon 励起 = error



Strong coupled system : Strange Metals
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Spin density wave (SDW)

d-wave
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Fluctuating, 
paired Fermi

pockets

Large Fermi surface;
possible VBS and/or 
Ising nematic order

Example of Hole doped CuO2

・Highly entangled states による非フェルミ流体の振る舞い

・No quasi particle excitation (フェルミ流体とは違う)

10
(Pictures taken from  Sachdev 0907.0008  )
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Connection between QG and cond-mat:
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There much literature on AdS/CMT…
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with  and  

[Sachdev-Ye 93] [Kitaev 14,15]

{ i, j} = �ij Majorana fermions N dimH = 2
N
2(                    )

・Solvable  in the  large       limit  N

・Have the  2d dilaton gravity sector
[Maldacena-Stanford, 16] [Maldacena-Stanford-Yang, 16]

HSYK = i
q
2

X

i1<i2<···<iq

Ji1i2···iq i1 i2 · · · iqHamiltonian:

hJi1i2···iq iJ = 0 hJ2
i1i2···iq iJ =

J 2(q � 1)!

q(2N)q�1

J

 i

SYK model:

・Exact diagonalization at finite      N

・✔️ cond-mat  ✔ quantum information  ?general relativity

・Similar to Holographic Non Fermi Liquid  
    (AdS/CMT), concrete Hamiltonian

( = qubits on horizon)
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large N limit:
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・Numerical solution at q=4 G(⌧)

⌧

�J = 200

Exact, numerics
Conformal limit

�J = 10

S[G,⌃] = N

"
log Pf(@⌧�⌃)�

Z
d⌧1

Z
d⌧2⌃(⌧1, ⌧2)G(⌧1, ⌧2)�

J 2

q
G(⌧1, ⌧2)

q

#

for G(⌧1, ⌧2) =
1

N
h i(⌧1) i(⌧2)i and ⌃(⌧1, ⌧2)

disorder average と Hubbard-Stratonovich変換をすると

→ large Nでsaddle pointをとることで解ける
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Universality: Conformal symmetry breaking

・SYK model は 破れた reparametrization (conformal) 対称性を持つ:

The effective action for Nambu-Goldstone modes           is

{f(⌧), ⌧} =
f 000(⌧)

f 0(⌧)
� 3

2

⇣f 00(⌧)

f 0(⌧)

⌘2
S = �N↵S

J

Z
{f(⌧), ⌧}

・同じ対称性の破れは 2d dilaton gravityにも存在 

・ある種(near extremal)のBHのダイナミクスは  
    reparametrizationのダイナミクスで記述される

AdS2

cutoff

f(⌧)

[Maldacena-Stanford-Yang, 16]

G(⌧1, ⌧2) [f 0(⌧1)f
0(⌧2)]

�G(f(⌧1), f(⌧2))→
(correlation function)

(f(u), z(u))
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SYK model

2d dilation gravity

S = �C

Z
du{f(u), u}

{f(u), u} =
f 000

f 0 � 3

2

⇣f 00

f 0

⌘2

Schwarzian action:

Many dynamics are governed by the dynamics of reparametrization

low energy1

16⇡G

Z
�
p
g(R+ 2) +

1

8⇡G

Z

bdy
�bK

 reparametrizationの“Non Linear Sigma Model” .

4d near extremal black holes 
in standard model Holographic Non-Fermi  

Liquid (BH in AdS)

Universality: Conformal symmetry breaking

Linear in T resistivity (in high Tc SC) from Schwarzian [Guo-Gu-Sachdev, 20]



Traversable wormholes
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Entanglement is resource. We can not send messages only with entanglement 

Similarly, having wormhole is not enough to send messages

Can we send messages through wormholes? -> traversable wormholes!

[Gao-Jafferis-Wall, 16]

couple couple

A solution can be constructed in the Standard model (smaller than 1/Tev)

[Maldacena-Milekhin-Popov, 18]
in a regime where we can use reparametrization (Schwarzian) modes
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[Maldacena-Qi 18]SYK traversable wormholes:

µ

Hopping term

JL JR
H = HL +HR + µHint

Hint = i
NX

i=1

 L
i  

R
i

⇡ Traversable 
 wormholes

・Gapped phase = Traversable wormholes 

・高温では, SYK = Non-Fermi Liquid like phase = 2 BH phase

q = 4, calJ = 1 (Λ = 105, ΔT = ±0.001)
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・reparametrization (quantum gravity) mode で記述できる



①Introduction

②Model for SYK teleportation
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③SYK Lindbladian

・connections between Quantum Gravity, cond-mat and QI

・Review of the SYK model

T.Nosaka - TN,JHEP 02 (2021) 150, arXiv 2009.10759

T.Nosaka (Riken) - TN,JHEP 02 (2020) 081, arXiv 1912.12302

based on 

direction: QI + cons-mat → QI + QG



SYK/Holographic teleportation

19

0 0 10

Split space time

Do quantum operation

Measure one side on bottom 

Do quantum operation on top

0 01

Entanglement is resource. 

With measurements and operations, we can teleport quantum information

[Shiba-TN-Takayanagi-Watanabe, 16]
[Susskind, 16]

0

operation operation

Send results by CCSend results by CC

CC CC
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SYK teleportation [Kourkoulou-Maldacena, 17]

|Bs(�)i = hBs|TFD(�)i
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・

・ state dependent deformation

result in pure states in R system

[cf: Almheiri-Mousatov-Shanyi, 18]

entangled state:

HSYK ! Hdef

can teleport the QI of L system

RL L R

L R
L R

・measurement basis 

 2k�1 |Bsi = isk 2k |Bsi s = (s1, · · · , sN
2
)

Hdef = HSYK + µHM (s)

[Gao-Jafferis, 19]

[cf: QET in BH formations, Hotta10]

|TFD(�)i = 1p
Z(�)

X

n

e�
�
2 En |EniL ⌦ |EniR



mass deformed SYK model :

21

J

µ
HSYK = i

q
2

X

i1<···<iq

Ji1···iq i1 · · · iq

measurement basis 

 2k�1 |Bsi = isk 2k |Bsi

|Bsi : simultaneous eigenstates of spin operators Sk = �2i 2k�1 2k

[Kourkoulou-Maldacena, 17]

ground state of the mass term

s = (s1, · · · , sN
2
)

(cf: stabilizer formalism of quantum error correction)

projected state: |Bs(�)i = hBs|TFD(�)i = e�
�
2 HSY K |Bsi

HM ! i

N
2X

i=1

(�̂k 2k�1 2k +Bk�̂k)( : SYK with controller )HM (s) = i

N/2X

k=1

sk 2k�1 2k

Hdef = HSYK + µHM (s)

Try to put                as the ground state of deformed Hamiltonian|Bs(�)i
what we did in SYK teleportation 

k = 1 ⇠ N/2
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Variational approximation by projected state

→ We use the projected states
as variational ansatz for the GS of the mass deformed SYK 

・                       is the ground state of the mass term          (                ) |Bs(� = 0)i HM µ ! 1

・                       is the ground state of the SYK                (               ) |Bs(� = 1)i µ ! 0HSYK
maximized overlap �� β �Bs 0(+)� 2��Jijkl

N=10
N=14
N=16
N=18
N=22
N=24
N=26
N=30
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・direct computation of the overlap
| hGs(µ)|Bs(�(µ))i |

・at large q limit, the overlap is

| hGs(µ)|Bs(�(µ))i | = e
� N

q2
·0�# N

q3

We can compute using Liouville action

�(µ) : maximize overlap

・We want to understand how               and               are close. |Gs(µ)i |Bs(�)i

|Bs(�)i

[cf: 1+1d CFT case,  Cardy 17]

[Nosaka-TN, 19]



Variational approximation, Schwarzian

hBs(�)|Hdef|Bs(�)i
hBs(�)|Bs(�)i

= ESYK � µG�(�/2)
2

SYK thermal energy SYK thermal correlator at ⌧ =
�

2

・Energy in the trial wave function is

→ vary    , minimize the trial energy →determine � = �(µ)

・For large    (small    ), we can use the Schwarzian (quantum gravity)

ESYK = E0 +
2⇡2↵S

�2J
(

→

G�(�/2) = c�
⇣ ⇡

�J

⌘2�

⇡

�(µ)J =
⇣�(c�)2µ

J↵S

⌘ 1
2(1�2�)

Numerical
Conformal limit

q=6

0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

T(μ)

μ

23

�

µ�
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Compare observables

(2)Spin operator expectation value
hGs(µ)|Sk|Gs(µ)i

(1)Ground state energy               E0(µ)

= �2iskGo↵

(0)

(3)Energy in the SYK Hamiltonian
hGs(µ)|HSYK |Gs(µ)i

Gs(μ)>, numerics
Bs(μ)>, numerics
Gs(μ)>, conformal limit
Bs(μ)>, conformal limit

0.000 0.005 0.010 0.015 0.020 0.025
0.00

0.05

0.10

0.15

0.20

0.25

0.30

μ

-
ⅈG

of
f(
0)

Spin Operator Expectation value

0.000 0.005 0.010 0.015 0.020 0.025
-0.0114

-0.0112

-0.0110

-0.0108

-0.0106

-0.0104

-0.0102

μ

<
G
s(
μ)
|H
SY
K
|G
s(
μ)
>

Energy in SYK Hamiltonian

0.000 0.005 0.010 0.015 0.020 0.025 0.030

-0.0145

-0.0140

-0.0135

-0.0130

-0.0125

-0.0120

-0.0115

μ

E 0
(μ
)

Ground-state Energy

and hBs(�)|Hdef|Bs(�)i

hBs(�)|HSYK |Bs(�)iand 

hBs(�)|Sk|Bs(�)i = 4G�(�/2)
2and 

・same scaling but different coeff. 
    in conformal limit
・at large q, they perfectly agree

(1)

(2)

(3)

 , 
・               is excited state in SYK|Gs(µ)i



Correlation function: numerical solution

High temperatureLow temperature
Real Time

Imaginary Time

exponential decay (gap) at low temperature

Similar to SYK at hight temperature

oscillating behavior exponential decay25

G(⌧1, ⌧2) = h i(⌧1) i(⌧2)i
G

o↵

(⌧
1

, ⌧
2

) = h 
2k�1

(⌧
1

) 
2k(⌧2)i



Green’s function in conformal limit at 0 temperature

・Real time correlator in ground state

G>(u1, u2) = h i(u1) i(u2)i = e�i⇡�c�
⇣ ↵

J sin(↵(u1 � u2)� i✏))

⌘2�

which oscillates, the period is set by the mass gap

26

・analytic expression for Euclidean correlators → continue to real time

, G<(u) = GE(iu� ✏)G>(u) = GE(iu+ ✏)

singularity at u2 � u1 = 0,±2⇡

↵
,±4⇡

↵
is regulated in the full

(UV complete) answer.

…

G
o↵,c(⌧) = 2i↵(µ)µ�1

�(1��)2

�(�)2
e�2↵(µ)�|⌧ |

2

F
1

(2�, 2�; 1; e�2↵(µ)|⌧ |)

↵(µ) =
J
2

"
�(2� 2�)�(�)2

�(2�+ 1)�(1��)2
1

(2c�)(q�2)

# 1
2(1�2�)⇣ µ

J

⌘ 1
1�2� , Gc(⌧) = c�

⇣ ↵(µ)

J sinh(↵(µ)⌧)

⌘2�

・Imaginary time correlator in ground state



・Real time evolution under SYK Hamiltonian

Solve the Schwarzian mechanics, L = �N↵S

J

Z
{f(u), u}

Energy                                       hGs(µ)|HSYK |Gs(µ)i

Initial condition is set from f(u) = tan(↵(µ)u) for u < 0

Consider time dependent Hamiltonian Hdef(u) = HSYK + µ✓(�u)HM

→
(

w/

f(u) =
2↵S

"(�)

⇡

�J tanh
⇣⇡
�
u
⌘

The solution is 
2⇡2↵S

�2J = ↵(µ)
�(2�)�(1��)2�(1� 4�)

�(�)3�(1� 2�)

G>(u1, u2) = e�i⇡�
⇣ ⇡

�J sinh ⇡
� (u1 � u2)

⌘2�
・diagonal correlator:

exactly the same with thermal one!

・Spin exp val: hSk(u)i = hSk(0)i
⇣

1

1 + (

2↵S
"(�)

⇡
�J )

2
tanh

2
(

⇡
�u)

⌘⇣
1

cosh

⇡
�u

⌘4�

27

Dynamics without deformation: Quantum Quench



Excited state properties of mass deformed theory

28

・the level statistics
(random matrix property)
by exact diagonalization for

To see the quantum chaotic property

gap ratio・Lyapunov exponents at large N

and high energy states are chaotic = same with SYK 

N = 30

q = 4, calJ = 1 (ΛL = 105, TL = 2000 (△: ΛL = 2×105, TL = 105))
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Low excitation = Cap off
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Gravity interpretation

Brane	with		
Quantum	informa0on	

|"# · · · "i

|"# · · · "i

Couple	quantum	field		
To	quantum	computer	

Falling brane represent information scrambling

�ose		ontrol	�ver		
Quantum	computer	side			

|"# · · · "i

Brane	with	informa6on	
�alling�

Black	hole	
horizon	
generated�

like holographic  
superconductor/insulator 

like holographic  
Non Fermi Liquid

Large excitation = BH
Quantum Quench

Success/Failure of teleportation ↔ phase of matter + dynamics

[Hartnoll-Herzog-Horowitz 08]
[Nishioka-Takayanagi-Ryu 09]

[Herzog-Kovtun-Sachdev-Son 07]
[Faulkner-Liu-McGreevy-Vegh 09]
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Importance of state dependent deformation

To escape interiors, we should know

correct pair    (  2k�1 and    2k

correct sign    sk

and correlate               and |Gs(µ)i Hdef = HSYK + iµ

N/2X

k=1

sk 2k�1 2k

Sign flip → excitation of �E = µ| hSki |

many excitations → evolved by chaotic part of Hamiltonian Hdef

→ black hole formation = failure of teleportation
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Teleportation at late time

・Can we escape interiors of scrambled state e�iHSY KT |Gs(µ)i ?

→ Simple deformation          does not work. Hdef

・deformation including “time reversal” H 0
def = HSYK + µ

X
ske

�iHSY KTSke
iHSY KT

　can escape interiors, but  e�iHSY KTSke
iHSY KT is a complex operator.

・“Size” of operator grows [Robart-Stanford-Streicher 18] [Qi-Streicher 19]

Each expansion coefficients

is very small, highly depends on each realization            , similar to SFFJi1···iq
[CGHPSSSST 16] [TN 19]

e�iHSY KTSke
iHSY KT =

NX

i=1

X
ai1,··· ,il(T ) i1 · · · il



Compare with Toric code
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degenerate ground states Low excitation (global AdS)

Anyon excitation Black Hole formation

Wilson loops Bulk operator 

code

error

operator

Toric code Deformed SYK

SYK side is close to holographic (HAPPY) code
[Harlow-Pastawski-Preskill-Yoshida, 15]

[cf: Almheiri-Dong-Harlow- 14]

[cf: Fradkin-Shenker 79]
(deconfined)



①Introduction

②Model for SYK teleportation
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③SYK Lindbladian

・connections between Quantum Gravity, cond-mat and QI

・Review of the SYK model

A.Kulkarni (Princeton U)- TN - S.Ryu (Princeton U), arXiv 2021.13489
based on 

direction: QI + QG → QI + cond-mat 



3.Lindbrad SYK

Question: condensed matter application? SYK counterpart?
Let us consider bra-ket coupling in the SYK: Lindbradian SYK models

 ・There is an argument that we should also allow bra-ket wormholes 
when we consider the density matrix of the universe

 ・wick rotation of traversable wormholes gives such examples

t = 0

wormhole connects bra and ket

[Page, 86]

CFT2�

Igrav[g
(2)
ij ,�] + ICFT[g

(2)
ij ,�]

2d	Gravity�

equal time 
slice

equal 
space slicewormhole

  in gravity counterpart (dialton gravity + 2d CFT)

[Chen-Gorbenko-Maldacena, 20]

[cf: Anous-Kruthoff-Mahajan, 20]
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Motivation from Quantum Gravity



Schwinger-Keldysh formalism for Lindbladian:

⌘|⇢(t)i |⇢0i

e�iHt

eiHt

etL⌘ |⇢0i|⇢(t)i

Hamiltonian evolution Lindbradian evolution

⇢̂

⌘|⇢i |Ii

First, we use the state-operator map

(Choi–Jamiołkowski isomorphism)

Lindbrad equation:
d

dt
⇢(t) = �i[HSYK , ⇢(t)] +

X

k

(Lk⇢(t)L
†
k)�

1

2

X

k

(L†
kLk)⇢(t)�

1

2
⇢(t)

X

k

(L†
kLk)

⌘ L(⇢(t))
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Models for SYK Lindbladian:

(1)An example of Non Random Jump operators: Li =
p
µ i

After channel-state mapping, we get operator similar                               model :

L = �iH+
SYK + i(�1)

q
2H�

SYK � iµ
X

i

 i
+ 

i
� � µ

N

2
I+ ⌦ I�

[A.Kulkarni, TN S.Ryu, 21]
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(2)An example of Random Jump operators: La =
X

i<j

Ka
ij 

i j

L = �iH+
SYK + iH�

SYK +
X

a

X

i<j

X

k<l

Ka
ijK̄

a
ij

⇣
 i
+ 

j
+ 

k
� 

l
� +

1

2
 k
+ 

l
+ 

i
+ 

j
+ +

1

2
 k
� 

l
� 

i
� 

j
�

⌘

Similar to coupled SYK models in 

[Iyoda-Katsura-Sagawa,18]Also similar to Wishart SYK, [Fu-Gaiotto-Maldacena-Sachdev,16]SUSY SYK,

[Kim-Klebanov-Tarnopolsky-Zhao,19]

[Maldacena-Qi 18]

hKa
iji = 0 h|Ka

ij |2i =
K2

N2 a = 1 ⇠ M

・Both models are solvable, strongly coupled Lindbladian at large N



Stationary state Green’s function:

At late time, Green’s functions show exponential decay

At large N limit, the Schwinger-Dyson equation is tractable 

At large q limit with                  fixed, the system analytically solvableqµ = µ̂

G++(t) = � i

2

⇣
1 +

1

q
g++(t)

⌘
eg++(t)

=

1

J 2
cosh

2
(↵|t|+ �)

↵ = J
r⇣ µ̂

2J

⌘2
+ 1 � = arcsinh

⇣ µ̂

2J

⌘
� =

2↵

q
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Lindbladian spectrum: Non Random

Real-Complex transition? [cf: Hamazaki-Kawabata-Ueda, 18]
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Stationary state Green’s function: Random

K = 0.1 K = 1 K = 10

Solvable at large N and M, fixed M/N

39

Im GR(!)

GR(t) ⇠ Ae��t sin(!0t+ �)



Lindbladian spectrum: Random

・Fixed M (number of jumps), increase K (strength of single jump)

・Fixed K, increase M

Lemon shape at large K

Formation of “island” at large M
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・Solvable at large N, we can read off the “gap” = decay rate 

・At large q analytically solvable, a part of spectrum are also available 

・Dissipation drives system to infinite temperature,
In particular, we can not use Schwarzian theory (quantum gravity modes)
(similar problem in de Sitter continuation of SYK/BH                                               )[Maldacena-Turiaci-Yang, 19]

・ SYK Lindbradian ↔ couples SYK model

・stationary SYK Lindbladian ↔ Ground state of coupled SYK = wormhole

41

Some comments:



Conclusion

・Brief review of interplay of cond-mat, quantum gravity and quantum info

・Introduction to SYK model and its quantum gravity sector (Schwarzian)

・Analysis of mass deformed SYK model,used in the context of teleportation
variational approximation by projected states (“continuous tensor networks”)

・Analytic continuation coupled SYK motivated by wormhole counterpart
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・Review of Entanglement and wormholes

correlation functions and dynamics

Non Random Jumps = analytic continuation of coupled SYK

Braket coupling in Schwinger Keldysh = Lindbladian dynamics 

Models are solvable at large N

Numerical study of the Lindbladian spectrum

success/failure of teleportation and phases of matters



Future problems

・More application of Cond-mat → quantum gravity
[cf:talk in Strings by Xiao-Gang Wen 21]

・Further study of SYK Lindbladian and their Non-equilibrium phases

・More application of quantum gravity →quantum information
[cf:Hayden-Penington 20]

・(Quantum) Spin glass phase and black holes
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・Non unitarity evolution in CFT,  string theory  etc…

[cf:Anous-Haehl, 21]

[work in progress]

・Real time dynamic in deformed SYK Hamiltonian

[cf: Dijkgraaf-Heidnreich-Jefferson-Vafa, 16]

・More on  solvable Lindbladian  (random t-J, complex SYK etc…)


