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o

Young-type experiment

Remarks
v" QM can never predict the definite
D result of a single measurement,
| — ) ) ) v' QM gives only a probabilistic
E Totoctor prediction for the accumulated

distribution of observables.

v" When the route I or II is specified,
the interference disappears.
) ))

emitter divider

M. Namiki and S. Pascazio, PRA 44, 39 (1991).
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Young-type experiment
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source of Dirac comb
stochasticity D ;
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detector

emitter

M. Namiki and S. Pascazio, PRA 44, 39 (1991).
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divider
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= [t1]* + [14]” + 2 Re (¥}1)h)
= P + P> + 2Re (¢75)

— 4 int

If P, =0, the W.Fn. “collapse” occurs
(D works), while 1f P._ remains, the

Int

W.Fn holds its QM nature (D 1s useless).

We do not need the disappearance of a
part of the W.Fn. when we discuss the
accumulated distribution of obs.
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SemiClassical Distorted Wave model
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Y. L. Luo & M. Kawai, PRC43, 2367 (1991); M. Kawai & H. A. Weidenmueller, PRC45, 1856 (1992); Y. Watanabe+, PRC59, 2136 (1999).
11/23 KO+, PRC60, 054605 (1999); T. Wakasa+, PRC65, 034615 (2002); KO+, PRC76, 021602(R) (2007).



A 1D model
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1D model for the 1-step process

PW for outgoing particle PW for incoming particle
T /

T(iu):< ZKfZSO "U‘B%KZ >

s.p. W.Fn. above the Fermi level contact interaction  s.p. W.Fn. below the Fermi level
© ” _ | target length: ¢
m, Ei < >
2 e m, Ef
o>
0
| >
® k F=Tp=T N / / z
uniform Fermi Gas model < ®
m, €,
o
®
_ =
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O It determines the angular distribution

~ nuclear radius: oscillation
~ NN interaction range: smooth

O] It becomes shorter as the number of
states contributing to the process
Increases.
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energy transfer

NZr(p,p) at 200 MeV

Kernel (w =80 MeV)
Kernel (w =40 MeV)




1-step cross section

2

(1)]? _ (1) 2 g2 -
T, (S(kg—ki—w)%/ dka/ dkg |Tge | 0 (kj — k2 — &)
summation over states 5

w=K;-K; q=K,—K;

[/
®: energy transfer

do(1) kr cos (kou) cos (\/(D —- kgu)
X /du cos (qu) / dk e =
d(.{.) kain \/w —|_ k(2)i

, Kernel Fq(l) (u,w)
b=z~ == to satisfy |kg|>kF

Spatial Decoherence Parameter (SDP)

a(1) (w)
¢/

e (w)y=1-

N

13/23 a'M) (w): coherence length = range of Fql) (u,w)
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2-step cross section
F(z) (Ug,’ul,W)

do?) 1
- X /du2 duq /dEm F(g) (ug, wo) qu(ll) (w1, wr)

E : projectile energy after the 15 collision

Coherence lengths a,? and a,® for the 2-step process

/&52) (w) . range Of F(z) (’UQ, O,W) \/ (2) (2)

(w)

(2) ¢, ,\- (2)
_ay (w): range of F*/ (0, u1,w)

ITE is fixed at(E; + Ef) /2,

a(2)
ddw X (/ Fq(gl) (ug,w/2) dUQ) (/ Fq(ll) (u1,w/2) dul) @ (w) ~ D (w/2)




N-step cross section

N N-1
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If B, ’s are fixed at By + iw/N, ) (w) ~ €V (w/N) .
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Results
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SDP for the 1- and 2-step processes

E, =400 MeV, N=10, /=20 1m
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For the 2-step process, including all allowed £, slightly helps to develop the SD.



Effect of integration over E__

E. =400 MeV, N=10, /=20 fm

o = 60 MeV o =100 MeV

0.8 _ — Fm fixed 0.8 i — Em fixed
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When £ 1s fixed, the kernel contains “noises” in the asymptotic region.
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SDP for 1-4 step processes
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Effect of integration over E__

E. =400 MeV, N=20, /=20 fm
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Integrating £, for the N-step process at o strongly increases the SDP when the tail

behavior of thel-step kernel at w/N prevents the SD.
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