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✔ Spatial/ time reversal  symmetry breaking 
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✔ Coherent modulation of electronic states (within scattering time window ) 
-(ET)2I3 (organic metal) κ-(ET)2Cu[N(CN)2]Br (SC)
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Light-induced magnetization
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-RuCl3 (Spin liquid)



ii) Stimulated emission in organic SC κ-ET salt 

✔ Temperature dependence (anomaly around TSC)   

✔ Enhancement of SHG near SC fluctuation   

Outline 
i) Introduction

iii) Unconventional SHG in κ-ET salt
✔ SHG induced by Petahertz no-scattering current (CEP sensitive)         

Nat. Commun. 2020

Nat. 
PRB

Nat. Photon 2018

✔ Ultrafast stimulated emission (SE) driven by strong field          

✔ 6-fs NIR pulse, CEP control/detection 

✔ Coherent charge motion in correlated system 
(Coherent chare motion, Dynamical localization) 

PRL2010
Nat. commun. 2014 
PRB 2016
PRB 2017(R)
J. Phys. B 2018
(review)

✔ Ultrafast magnetization (larger for T>TN) 
✔ Coherent carrier dynamics & theory

iv) Ultrafast magnetization in Kitaev spin-liquid α-RuCl3

Phys. Rev. Res. (L) 4, 
L032032(2022) 
arXiv: 2207.03877v) Summary & inprogress

✔ Correlated Dirac semimetal (SrIrO3)

✔ Electronic ferroelectricity ,,,,,,,,,,

✔ Toward half-cucle (～2 fs) pulse
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Metal-to-insulator transition

Kinetic energy
（transfer integral）

Coulomb repulsion
（On-site、inter-site）

Extended Hubbard model
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 
= − + + +  

“Metal-insulator transitions”, 
Rev. Mod. Phys. 70, 1039-1263 (1998).

✔ Not only I-M transition, but also
FM, FE, SC can be accessed 

1/2 filled (averaged charge=1/site)

Mott insulator

charge
t U

U/t >> 1

Filling control
Hi-Tc Cuprates

Bandwidth control
Organic conductors



Photoinduced Insulator –Metal transition

Miyano, Tokura et al.

PRL1997.
108

R
e
s
is

ti
v
it
y

（Mn oxides）

Melting of Charge/Orbital order PM→FM

Iwai, Okamoto, Tokura et 
al. PRL 2003

（Ni complex)
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強相関系の電子コヒーレンスの観測（と操作）

i) 有機物質 電子のコヒーレンス時間 ～40 fs（h/(0.1 eV

ii) < 10 fs の時間分解測定

CREST(JST)   2008-2013
先端光源を駆使した光科学・光技術の融合展開（伊藤正 総括）

「先端超短パルス光源による光誘起相転移現象の素過程の解明」



Capturing coherent charge oscillation 
10 fs spectroscopy + quantum calculation

Fano interference

Phys. Rev. Lett. 98, 097402 (2007)
Phys. Rev. Lett. 105, 246402 (2010).

Coherent charge oscillation (T=18 fs )
(dephasing ～ 40 fs)  

ferroelectric

12 years ago
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Aoki, Tsuji, Eckstein, Oka, Werner Rev. Mod. Phys. 86, 779 (2014). 
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PHz charge motion deiven by PHz field  

Schulltze et al.,Science 2014 

Attosecond XUV spectroscopy (Si)

Schiffrin, Krauszet al., Nature 2013 

Attosecond transient current (SiO2) 

Paradigm shift toward quantum manipulation 

Position, Density Phase

/t E = ～100 attosecond ～eV

Semiconductors, Graphene  （e-e interaction is small）

T. Boolakee et al., 
Nature 605, 251(2022)
K-J Tielrooij Nature Mat.

PHz logic gate
（interference: real & virtual)



Optical freezing of charge motion

10 MV/cm

7 fs

Ishikawa et al., Nature commun.  2014

Reflectivity change

Nature commun. 5, 5528(2014)

PRB 93, 165126 (2016) 

PRB 95, 201106(R) (2017)

J. Phys. B51, 174005(2018)
(Review) 

Insulating gap in time axis



Dynamical localization

Dunlap, Kenkre, PRB(1986)
Grossmann,Hanggi, PRL(1991)
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Wannier state (tight-binding)
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P. L. Kapitza, Soviet Phys. 
JETP, 21, 588(1951)

Dynamical stabilization
M. Bukovet al., 
Advances in Physics, 64, 139(2015).



Optical freezing of charge motion

10 MV/cm

7 fs

Ishikawa et al., Nature commun.  2014

Reflectivity change

Nature commun. 5, 5528(2014)
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(Review) 

Insulating gap in time axis



ii) Stimulated emission in organic SC κ-ET salt 

✔ Temperature dependence (anomaly around TSC)   

✔ Enhancement of SHG near SC fluctuation   
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iii) Unconventional SHG in κ-ET salt
✔ SHG induced by Petahertz no-scattering current (CEP sensitive)         
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✔ 6-fs NIR pulse, CEP control/detection 
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✔ Ultrafast magnetization (larger for T>TN) 
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6 fs NIR pulse (1.3 cycle, CEP stabilized)
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PHz field
(～1 eV)

<100 fs

Spin
Phonon

Cooper pair
Superconductor

ℎ𝜈 ~ eV

Pump

Recombination

～ps

Quasiparticle

Excitation of superconductors

✔ Avoid increasing temp
→low energy excitationsExcitation by light (NIR-Visible)

→ rise of electron temp. (scattering) 

Matsunaga, Shimano et al. Science 2014.

・Coherent exc. of Higgs mode (BCS)

✔ Another approach 

e-e scattering time 
・～40 fs  h/(0.1 eV)  organic SC 
・～ 4 fs or shorter ? High-Tc Cuprates

M. Buzzi et al.,  
PRX 10, 031028 (2020)

・Photoinduced SC Cuprates, Organics

D. Faustii et al.,  
Science 2011

Giannetti, Mihailovic et al., 
Advances in Physics, 65, 58-238(2016).

・6 fs pulse can control electrons in no-scattering time window ?



Organic superconductor

k-(ET)2X

dimer
ET 

(BEDT-TTF)

ET layer

Anion layer

Dimer Mott insulator SC

1/4 filling (hole) 
→1/2 flling for dimer 

Hubbard gap

Dimer gap

3/4filled
1/2filled

Dimer Mott insulator

Critical end point

1 st order 

boundary

Top view

Kanoda, Hyperfine Int. 1997

Orthorhombic
Pnma

κ-(ET)2Cu[N(CN)2]Br



k-(h-ET)2Cu[N(CN)2]Br (h-Br) 
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Dimer band
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Nat. Photon 12, 474 (2018)
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τ

Double –pump & probe 
to detect coherence of the nonlinear charge osc. 

Stimulated 

emission

“Conventional” stimulated emission 

Population inversion Laser

New polarization coherence !

Origin of the SE is coherent charge motion ?

Matsubara, Itatani, Yonemitsu, Koshihara, Onda et al., PRB89, 161102(R)(2014)
Kimata, Kayanuma, Nakamura et al., PRB101, 174301(2020)

✔ Decay time of SE (70 fs)
is approximately equal to the 
electronic coherence time  
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✔ Gradual increase from 20 K ～2 TSC

Nonlinear charge osc. (transient current) 
amplified by SC fluctuation 

✔ Anomaly at 10 K ～TSC (heating effect ～3 K) 

10 fs

OP

Free Energy

Ins. Metal

Critical
End point

10 fs (time const. 5 fs) 
response
(strong field)

High energy (> 0.4 eV)
Interaction

⇔   U 0.8 eV
V 0.2～0.3 eV
t 0.1～0.3 eV

Anomaly  at TSC



Summary 1 

Mott criticality and superconductivity are 

sensitive to 10 fs strong field effect

✔ Stimulated emission  at 0.63 eV

✔ Anomalous increase at CEP, SC at 10 fs 

Strong light field effect on dimer Mott system

(6 fs NIR ～single-cycle pulse)

h-Br

/ (0.63 )

6.4

eV

fs～  

✔ Nonlinear charge oscillation (synchronization)

Kawakami, Sasaki, H. Yamamoto, 
Yonemitsu, Iwai et al., 
Nat. Photon. 12, 474 (2018)
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Nat. Commun. 10, 1038 (2020)



Carrier Envelope Phase (CEP)

0CEP = / 4
/ 2


( )E t

0

0CEP =

/ 4

/ 2



( )j t

0

CEP

20

J(average)

✔ Non-dissipative J is CEP sensitive
One-cycle change in one-period  

( )
0

t

J v E t dt  

:CEP CEP( ) ( ) ( )0 sin CEPE t E t t = −

✔ J survives  after the pulse 
(during scattering time window)

t

Nat. Commun. 10, 1038 (2020)



CEP dependence of SHG
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SHG is described by non-scattering current  
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20

J(average)

Current is modulated by f .
But, SHG can’t distinguish 
direction of current 
(SHG is modulated by 2 f) 

Two-cycle change in one-period 

Inversion of current direction 

Nat. Commun. 10, 1038 (2020)
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✓ SHG increases toward TSC

Tsc

SH

TH

✓ SHG is sensitive to SC fluctuation 
(reflecting the small working distance of non-scattering current?

)

SC fluctuation (T>TSC)
・Lang et al., PRB49, 15227(1994)
・Kobayashi et al., 

PRB89, 165141(2014) 
・Mckenzie., Science (1997) 
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CEP sensitive

✓Hartree Fock (98x98), U=0.8, V=0, triangular lattice, 
✓Hubbard model, Peierls phase  ω=0.7 eV, E//c 

Nat. Commun. 10, 1038 (2020)



Summary   Organic superconductor h-Br

E

scattering

e-

No-scattering current is sensitive to SC fluctuation ?

E(t)

E(t)
Nature Photon. 
12, 474 (2018)

Stimulated emission

Synchronization

2

sn e
j A

m
= (London eq. )

(Many electron system)  

?

Linear response

e-

E

( )
0

t

J v E t dt  
(One-electron approx.)no-scattering

time-window

Correlated charge 
motion

Nat. Commun.
10, 1038 (2020)( )

0

t

J v E t dt  

SHG

Charge acceleration

Current induced SHG

Open problem between ultrafast and SC ? 

Faraday Discussion 237,353(2022)
日本物理学会誌 77, 304 (2022)
レーザー研究 50, 313(2022)



ii) Stimulated emission in organic SC κ-ET salt 

✔ Temperature dependence (anomaly around TSC)   

✔ Enhancement of SHG near SC fluctuation   

Outline 
i) Introduction

iii) Unconventional SHG in κ-ET salt
✔ SHG induced by Petahertz no-scattering current (CEP sensitive)         

Nat. Commun. 2020

Nat. 
PRB

Nat. Photon 2018

✔ Ultrafast stimulated emission (SE) driven by strong field          

✔ 6-fs NIR pulse, CEP control/detection 

✔ Coherent charge motion in correlated system 
(Coherent chare motion, Dynamical localization) 

PRL2010
Nat. commun. 2014 
PRB 2016
PRB 2017(R)
J. Phys. B 2018
(review)

✔ Ultrafast magnetization (larger for T>TN) 
✔ Coherent carrier dynamics & theory

iv) Ultrafast magnetization in Kitaev spin-liquid α-RuCl3

Phys. Rev. Res. (L) 4, 
L032032(2022) 
arXiv: 2207.03877v) Summary & inprogress

✔ Correlated Dirac semimetal (SrIrO3)

✔ Electronic ferroelectricity ,,,,,,,,,,

✔ Toward half-cucle (～2 fs) pulse



Ru

Cl

α-RuCl3 : Spin-orbit assisted Mott insulator

a

b

c*

✔ Inter-site hopping t ～0.1 eV 
(between different t2g orbitals (such as dxz – dyz) 

Winter al. Phys. Rev. B93, 214431(2016)

=0.15 eV

～t

✔ No magnetic order （T>TN=7K）

・ described as Kitaev spin liquid 
・ excited : Majorana Fermion

A. Kitaev, Ann. Phys. 2006 

✔ Spin-orbit assisted Mott Insulator 

Jackeli, Khaliullin PRL 2009

・ 1/2 filling is realized by SOI (λ～0.15 eV)

Magnetic susceptibility

Sears et al., PRB 2015

Zig-zag AFM (T<TN)
Winter, Valenti et al., 
Nat. Commu 2017

dxz – dyz

t: intersite 
hopping

Orbital   
moment?

Honeycomb

structure



Sample : α-RuCl3(single crystal)
E || ab plane, thickness ～ 50 μm

Temperature : 
4 K - 20 K, 300 K (TN = 7-8 K)

〇100 fs pulse  (spot size 100 μm)
Pump : 0.30, 0.62, 0.89 eV, (1.55 eV) 

(0.1-4.0 mJ/cm2)

Probe : 0.54-1.03 eV

✔ Circular (𝜎+, 𝜎−) polarization

✔ Libear  polarization

Experimental 
magnetic 
susceptibility

Helicity dependent polarization rotation

0.5 1 1.5
0

5

Photon Energy (eV)

 2

Probe (100 fs)

× 25

Pump (100 fs)

T = 10 K

Sandilands et al., PRB 2016.

Mott-Hubbard

〇 6 fs pulse  ΔR/R (charge dynamics)
0.55 eV- 1 eV, 1mJ/cm2

6 fs

WFM Kimel et al., Nature 2005
AFM Satoh et al., PRL 2010 

Inverse Faraday effect

AFM

FM
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Polarization rotation  Δθ 

AFM(NiO) ～1/20
Satoh et al., et al., PRL 2010

✔ Ultrafast(～100 fs) & large response
(helicity sensitive)

Δθ＝5°, t～50 μm,  4mJ/cm2

𝜎+

𝜎−

4 K

17 K

×10

Probe

(0.89 eV)

4 mJ/cm2

Paramagnet  (TGG)  ～1/400
Mikhaylovskiy et al., PRB 2012

Light induced ultrafast magnetization (⊥ plane) 

Ellipticity
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Recent update: 
～10 fs measurment of Δθ

τ＝60 fs

Phys. Rev. Res. (L) 4, L032032(2022) 
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Unconventional behaviors of Δθ

0.1 ps

𝜎+

×(-1)𝜎−

: 0.89 eV

: 0.62 eV

Epu

Epu

✔ Reduction at T< TN  ?

4 mJ/cm2

TN (7K)

Opposit to the expected tendency 
in typical IFE  
(increase in Δθ below  TN)

New mechanism of light-induced magnetization ?

Excitation energy dependence
(Excitation spectrum of  )

✔ Resonance to spin-orbit excitons

Phys. Rev. Res. (L) 4, L032032(2022) 



✔ Ultrafast magnetization is related to the fast charge dynamics ?  

(a)

(b)
17 K  0 ps

Epu : 0.89 eV

(x0.6)

10 K

Epu :

1.55 eV

1.2 eV

Epu : 0.62 eV         
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0.62 eV

(×0.6)
0.89 eV

Probe 1.2 eV

Time profile of ΔR/R  

ii) ～ 250 fs 

→ phonon, spin ?  

i) < 100 fs

✔ Relaxation dynamics 

→ Ultrafast magnetization ? 

Phys. Rev. Res. (L) 4, L032032(2022) 
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17 K
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Epu : 0.55-0.95 eV
Epr : 0.60 eV

Charge dynamics captured by 6 fs pulse
ΔR/R measurement using 6 fs pulse (CEP locked)

✔ oscillation  period ～ 40 fs  

(<shortest phonon period 100 fs ) 

⇔ charge hopping t
(0.1 eV=h/(40 fs)) 

Magnetization is induced by the coherent charge motion 
between  different t2g (lifting orbital moment)  

→Coherent charge hopping 
between different t2g orbitals?

dxz – dyz

dephasing time 60 fs
～ lifetime of magnetization

even at room temp.

Phys. Rev. Res. (L) 4, L032032(2022) 



Opto-magneto effects in α-RuCl3 (theory）

✔Exact diagonalization (6-site)
＋time dependent Schrödinger equation

✔Peierls substitution 

Quantum mechanical analysis (steady state)
J. G. Rau et al., PRL112, 077204 (2014)
H. –S. Kim et al., PRB93, 155143 (2016) 
S. M. Winter ate al., PRB 93, 214431 (2016)
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・3- orbital (dyz, dxz, dxy) Hubbard model 

・=0.3 eV, 0.6 eV (pulse width =100 fs)
Pulse width 

𝐻𝑈 = 𝑈෍

𝑖,𝑎

𝑛𝑖,𝑎,↑𝑛𝑖,𝑎,↓ + 𝑈′ − 𝐽H ෍

𝑖,𝑎<𝑏,𝜎

𝑛𝑖,𝑎,𝜎𝑛𝑖,𝑏,𝜎 + 𝑈′ ෍

𝑖,𝑎≠𝑏

𝑛𝑖,𝑎,↑𝑛𝑖,𝑏,↓

−𝐽H ෍

𝑖,𝑎≠𝑏

𝑐𝑖,𝑎,↑
† 𝑐𝑖,𝑎,↓𝑐𝑖,𝑏,↓

† 𝑐𝑖,𝑏,↑ + 𝐽H ෍

𝑖,𝑎≠𝑏

𝑐𝑖,𝑎,↑
† 𝑐𝑖,𝑎,↓

† 𝑐𝑖,𝑏,↓𝑐𝑖,𝑏,↑

✔ The result of 
numerical calculation
shows that in-gap 
excitation is essential   

Phys. Rev. Res. (L) 4, L032032(2022)
J. Phys. Soc. Jpn. 91,104702(2022)



High-frequency expansion in Floquet theory

𝐻F
2
≅
1

𝜔
𝐽1
2
𝐹L R

𝜔
± 3 𝑡2 − 𝑡4 𝑡2 − 𝑡4 + 2 𝑡3 − 𝑡1

×෍

𝑖𝜎

𝑐𝑖,𝑦𝑧,𝜎
† 𝑐𝑖,𝑥𝑧,𝜎

† 𝑐𝑖,𝑥𝑦,𝜎
†

0 −𝑖 𝑖
𝑖 0 −𝑖
−𝑖 𝑖 0

𝑐𝑖,𝑦𝑧,𝜎
𝑐𝑖,𝑥𝑧,𝜎
𝑐𝑖,𝑥𝑦,𝜎

the second-lowest order 
of the high-frequency 
expansion

✔ Effective magnetic field is induced by 
charge hopping between different t2g

orbitals

Spiral current
drives magnetic momentorbital moment

有効軌道角運動量

異なるt2g軌道間の電荷移動

J. Phys. Soc. Jpn. 91,104702(2022)

Phys. Rev. Res. 4, L032032(2022) 



Summary

✔ Helicity dependent polarization rotation () in -RuCl3
→ 20 time larger than that of typical AF 

✔ Increase of  above TN

→ opposite tendency from conventional IFE 

✔ Resonant to spin-orbit excitons  

✔ Possible scenario 

→coherent charge motion between 

different t2g orbitals  such as dyz-dxz-dxy)

✔ Quantum mechanical analyses support the above 

mechanism T. Amano et al.,  arXiv:2207.03877
Phys. Rev. Research (L) 4, L032032(2022)

K. Yonemitsu  
J. Phys. Soc. Jpn. 91,104702(2022)



iv) Ultrafast magnetization in Kitaev spin-liquid α-RuCl3

ii) Stimulated emission in organic SC κ-ET salt 

✔ Temperature dependence (anomaly around TSC)   

✔ Enhancement of SHG near SC fluctuation   

Summary
i) Introduction

iii) Unconventional SHG in κ-ET salt
✔ SHG induced by Petahertz no-scattering current (CEP sensitive)         

Nat. Commun. 2020

Nat. 
PRB

Nat. Photon 2018

✔ Ultrafast stimulated emission (SE) driven by strong field          

✔ 6-fs NIR pulse, CEP control/detection 

✔ Coherent charge motion in correlated syatem
(Coherent chare motion, Dynamical localization) 

PRL2010
Nat. commun. 2014 
PRB 2016
PRB 2017(R)
J. Phys. B 2018
(review)

✔ Ultrafast magnetization (larger for T>TN) 
✔ Coherent carrier dynamics & theory Phys. Rev. Res. (L) 4, 

L032032(2022) 
arXiv: 2207.03877v) Summary & inprogress

✔ Correlated Dirac semimetal (SrIrO3)

✔ Electronic ferroelectricity ,,,,,,,,,,

✔ Toward half-cucle (～2 fs) pulse
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