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New pathway toward ultrafast control of
correlated electrons

v Coherent modulation of electronic states (within scattering time window )
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Metal-to-insulator transition

Extended Hubbard model

I_IEH = _Ztij (Ci+Cj +C}LC ) ZUInITnli +ZV|J |
ij

Kinetic energy Coulomb repuIS|on
(transfer integral) (On-site. inter-site)

1/2 filled (averaged charge=1/site)

Filling control Bandwidth control
t U/t >> 1 Hi-T. Cuprates Organic conductors
Char r \U E Critical end point
B ;‘- bad metal
N Pseudogap : 4 o

h'd
=
(]
et
=3
=
@©
bind
[0]
o
£
Q
'—

Temperature (K)

Mott msulator

-
o
o

insulator |
0 | superconductor

62 64 66 6.8 B B

y (oxygen content) t1Uypmer (Pressure)

v Not only I-M transition, but also
FM, FE, SC can be accessed

“Metal-insulator transitions”,
Rev. Mod. Phys. 70, 1039-1263 (1998).



Photoinduced Insulator —Metal transition
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Photo-excited states in correlated system
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v Electronic coherence survives (depends on material)
v Thermalization is not completed




PHz charge motion deiven by PHz field

Paradigm shift toward quantum manipulation
Position, Density » Phase

~100 attosecond At =AE/h ~ev

Attosecond transient current (SiO,) Attosecond XUV spectroscopy (Si)
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Nature 605, 251(2022)
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Semiconductors, Graphene (e-e interaction is small)



Optical freezing of charge motion
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Dynamical localization

Wannier state (tigpt-binding) W ot 1
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Dynamical stabilization
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Excitation of superconductors

v Avoid increasing temp
Excitation by light (NIR-Visible) —low energy excitations
— rise of electron temp. (scattering)- Coherent exc. of Higgs mode (BCS)

PHz field

D
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_____ - - \ Matsunaga, Shimano et al. Science 2014.
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Giannetti, Mihailovic et al., Science 2011 PRX 10, 031028 (2020)
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- 6 fs pulse can control electrons in no-scattering time window ?



Organic superconductor K-(ET)ZCu[N(CN)Z]Br
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x-(h-ET),CU[N(CN),]Br (h-Br)

Reflectivity/Optical conductivity (h-Br)
c.f. Faltermeier, Dressel et al., Pump-probe(2-or 3- beam)
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Tr. reflectlwty(AR/ R) & transmittance(AT/T)

v Same-color pump & probe

4 K, E||c, h-Br

Dimer v New reflectivity peak
_ 6 s probe, 0.63 eV, at 10 fs (FID at 0.7 eV)
~200 % reflectivity increase !

(15.& mJ/cm? v Lorentz analysis

— 10fs 1. Additional oscillator
:éggg frequency: 0.61 eV
damping: 0.04 eV

- == Lorentz

v Thin film (180 nm on CaF,)
H. Yamamoto et al.,
Nature commun. 2013

Increases of
transmittance and reflectivity

o6 — Stimulated emission

4 :
Photon Energy (ev) (Peak energy > dimer band)
Nat. Photon 12, 474 (2018




Tr. reflectivity(AR/R) & transmittance(AT/T)
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Nat. Photon 12, 474 (2018

v Same-color pump & probe

v New reflectivity peak
0.63 eV, at 10 fs (FID at 0.7 eV)
~200 % reflectivity increase !

v Lorentz analysis

Additional oscillator
frequency: 0.61 eV
damping: 0.04 eV

6 K h-Br

Ellc
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200 400
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Fast (65%) rise <10fs,
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Double —pump & probe
to detect coherence of the nonlinear charge osc.

“Conventional” stimulated emission
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Supplementary
Nat. Commun. 10, 1038 (2020)

v Decay time of SE (70 fs)
is approximately equal to the
electronic coherence time

Matsubara, Itatani, Yonemitsu, Koshihara, Onda et al., PRB89, 161102(R)(2014)
Kimata, Kayanuma, Nakamura et al., PRB101, 174301(2020)

Origin of the SE is coherent charge motion ?




Time dependent Schroedinger eq. (Yonemitsu)

2D ext. Hubbard model (16-site, 34 filling
(Exact diagonalization)

Hoo = Y (6,C1, +€7,C, ) +UD 0N+ Vynin,
(i i o

Photoexcitation (Peierls phase)

+ e +
ioCjo = EXP {_ i - A(t)} CioCio

C
hc

Single-cycle pulse

0.52
cE 21 Weak field
o T [
0.48
i ) 0.52 Strong fielc
Time evolution of
charge density on a molecule “I’“""M
0.48

Yonemitsu, JPSJ87, 044708(2018). 0 Tifne d4e |ay6(T/u)8) 10

Charge density




U dependence of non-linear charge motion
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Anomaly at T

v Gradual increase from 20 K ~2 Tqc

v Anomaly at 10 K ~T¢- (heating effect ~3 K)

Nonlinear charge osc. (transient current)
amplified by SC fluctuation
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Summary 1

Strong light field effect on dimer Mott system
(6 fs NIR ~single-cycle pulse)

v Stimulated emission at 0.63 eV

v’ Nonlinear charge oscillation (synchronization)

v Anomalous increase at CEP, SC at 10 fs
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Mott criticality and superconductivity are
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SHG &THG In organic superconductor

excitation=0.75 eV k-(ET),Cu[N(CN),]Br (T..=11.6 K)
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v SHG is not active (in perturbation)

v CEP dependence
v Temperature dependence
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v Polarization dependence
— unconventional SHG




Carrier Envelope Phase (CEP)
EO (t)sin(a)t—ngEP) Dcep . CEP

v J survives after the pulse
(during scattering time window)

J(average)

v Non-dissipative J is CEP sensitive
One-cycle change in one-period

Nat. Commun. 10, 1038 (2020)



CEP dependence of SHG

Two-cycle change in one-period [RACKECCEUUEINEEARTELRCEREY
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Inversion of current direction
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SHG is described by non-scattering current



Temperature dependences of SHG
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v SHG increases toward T
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- Lang et al., PRB49, 15227(1994)
- Kobayashi et al,,

PRB89, 165141(2014)

- Mckenzie., Science (1997)

v SHG is sensitive to SC fluctuation
(reflecting the small working distance of non-scattering current?




Mean field theory (Prof. Yonemitsu )

v Hartree Fock (98x98), U=0.8, V=0, triangular lattice,
v Hubbard model, Peierls phase w=0.7 eV, E//c
Nat. Commun. 10, 1038 (2020)
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Summary Organic superconductor h-Br

Stimulated emission

oo E(t) :}
/“ - :
_€—E
%‘\d\ Corr_elated charge % %\ = x% \\ Cy
scatterin el f 7/(0.631) z
g I E(t) ~ 64f5
o Nature Photon.
\X \,x _1_._ Synchronization 12, 474 (2018)
\‘ | l 1
I

Linear response  Cuyrrent induced SHG

Faraday Discussion 237,353(2022) . Nat. Commun.
OAYEESASE 77, 304 (2022) Jocver [ E(t)t 10, 1038 (2020)
L —H —8A3% 50, 313(2022)

No-scattering current is sensitive to SC fluctuation ?

Charge acceleration

J tEtdt ﬁ? '—nSeZA (Lond )
oc V oC j = ondon eq.

0 ( ) J = q
P,O g_cvz\;}::rt%rg\}\? (One-electron approx.) (Many electron system)

Open problem between ultrafast and SC ?
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a-RuCl; : Spin-orbit assisted Mott insulator
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v No magnetic order (T>T\=7K)

- described as Kitaev spin liquid
- excited : Majorana Fermion o
A. Kitaev, Ann. Phys. 2006 Zig-zag AFM (T<Ty)
_ _ _ Winter, Valenti et al.,
v Spin-orbit assisted Mott Insulator Nat. Commu 2017
- 1/2 filling is realized by SOI (A~0.15 eV)
Jackeli, Khaliullin PRL 2009

v Inter-site hopping t ~0.1 eV
(between different t,, orbitals (such as d,, - d

yZ
Winter al. Phys. Rev. B93, 214431(2016)




Experimental

magnetic
susceptibility

X (emu/mol Oe)
o o o

incidence ¢~
~~ to ab-plane

Helicity dependent polarizat"ion golclifols)  Sample : a-RuCl;(single crystal)
Inverse Faraday effect

E || ab plane, thickness ~ 50 pm
WEFM Kimel et al., Nature 2005 .
AFM Satoh et al., PRL 2010 Temperature :

4K -20K, 300K (Ty = 7-8 K)
Sandilands et al., PRB 2016.

25 5 O100 fs pulse (spot size 100 pm)
T=10K :

Probe (100 fs) Pump : 0.30, 0.62, 0.89 eV, (1.55 V)

+—>

Mott-Hubbard (0.1-4.0'mJ/cm=)
Pump (100 fs) v Circular (6%, ¢7) polarization

Probe : 0.54-1.03 eV

v Libear polarization

, O 6 fs pulse AR/R (charge dynamics)
: 0.55 eV- 1 eV, 1ml/cm?
Photon Energy (eV)




Polarization rotation A0

(0.89 eV)
4 mJ/cm?2

2
Time Delay (ps)

Phys. Rev. Res. (L) 4, L032032(2022)
Light induced ultrafast magnetization (L plane)




Unconventional behaviors of A©

Excitation energy dependence

2
L 4 mJ/cm (Excitation spectrum of A6 )

10 15 Photon Energy (eV)
Temperature (K)

v Reductionat T< Ty ? v Resonance to spin-orbit excitons

Opposit to the expected tendency
in typical IFE
(increase in AB below Ty)

Phys. Rev. Res. (L) 4, L032032(2022)

New mechanism of light-induced magnetization ?



Time profile of AR/R

o 0.62eV

© 0.89 eV
(x0.6)

Probe 1.2 eV

N
o
)
T
o
<

01 2 3
lex (mJ/cmZ)

v Relaxation dynamics

s ®E,:062eV

®E,  :0.89eV :
" 0.6) 1) < 100 fs

12 1.4 — Ultrafast magnetization ?
Photon Energy (eV)

i) ~ 250 fs

— phonon, spin ?

Phys. Rev. Res. (L) 4, L032032(2022)

v Ultrafast magnetization is related to the fast charge dynamics ?



Charge dynamics captured by 6 fs pulse
AR/R measurement using 6 fs pulse (CEP locked)

Phys. Rev. Res. (L) 4, L032032(2022) v oscillation period ~ 40 fs
even at room temp. (<shortest phonon period 100 fs )

& charge hopping t
(0.1 eV=h/(40 fs))

—>Coherent charge hopping
between different t,, orbitals?

(\IT‘\
o
=
o
~—
o0
DS

Ep, 0 0.55-0.95 eV
E, :0.60 eV

- 02 0.4 dephasing time 60 fs
Time Delay (ps) ~ lifetime of magnetization

Magnetization is induced by the coherent charge motion
between different t,, (lifting orbital moment)



Opto-magneto effects in a-RuCl; (theory)

Quantum mechanical analysis (steady state)

J. G. Rau et al,, PRL112, 077204 (2014)
H. -S. Kim et al., PRB93, 155143 (2016)
S. M. Winter ate al., PRB 93, 214431 (2016)

> | Spin-orbit Mott ga
v The result of £ 0.6l opnore ' gap _
numerical calculation <

shows that in-gap

excitation is essential

v Exact diagonalization (6-site)
+time dependent Schrodinger equation

—_>
(-U_

[SIR
5%
[

(@]

O

- 3- orbital (d,,, d,,, d,,) Hubbard model 3
Hy=U Z NigtNigl + (U = Jy) Z NigoNipe + U z Ni a1 Mip,l = ho=06ev
i,a i,a<b,o i,a%Zb '%
N
—Ju Z CZa,TCi,a,lC;b,lci,b,T +/u 2 CZQ,TCZa,lci,b,LCi,b,T ©
i,a+b i,a%b %
=
v Peierls substitution :
; -2~ Pulse width
- ®=0.3 eV, 0.6 eV (pulse width =100 fs)

50 100 150
Time Delay (fs)

Phys. Rev. Res. (L) 4, L032032(2022)
J. Phys. Soc. Jpn. 91,104702(2022)



High-frequency expansion in Floquet theory

1 F -
@) ~ =2 (ZL® )y /7 _ — _ the second-lowest order
iy = coll( B >(_ 3)(t2 — g = 208 — )] of the high-frequency

0 —i 1 Ciyz,o expansion
T : ; )
z Ciyz,o lXZO' Ci,xy,)< l 0 —l) . i,X2,0
io - 1 0 Cixy,o
_ Spiral current
2 e drives magnetic moment
BREnEmEF=

i oW o 4T (/R
I;"'ﬂ_ i i i ';2.;.9' (KT
) .|j (T S ] . o

v Effective magnetic field is induced b
charge hopping between different ¢, 213 5t, DuERIDEFISE

orbitals
Phys. Rev. Res. 4, L032032(2022)
J. Phys. Soc. Jpn. 91,104702(2022)




Summary

v Helicity dependent polarization rotation (A6) in a-RuCl;
— 20 time larger than that of typical AF

v Increase of AG@ above T
— opposite tendency from conventional IFE

v Resonant to spin-orbit excitons

v Possible scenario
—coherent charge motion between
different t,, orbitals such as d,,-d,,-d,,)

v Quantum mechanical analyses support the above

mechanism T. Amano et al., arXiv:2207.03877
Phys. Rev. Research (L) 4, L032032(2022)
K. Yonemitsu
J. Phys. Soc. Jpn. 91,104702(2022)



Summary PRL2010
i) Introduction Nat. commun. 2014

v Coherent charge motion in correlated syatem PRE 2016
h h - | localivationy PRB 2017(R)
(Coherent chare motion, Dynamical localization) ; Phys. B 2018

v 6-fs NIR pulse, CEP control/detection (review)

Ii) Stimulated emission in organic SC K-ET salt

v Ultrafast stimulated emission (SE) driven by strong field
v Temperature dependence (anomaly around Tsc)  nat. Photon 2018

Iii) Unconventional SHG In k-ET salt

v SHG induced by Petahertz no-scattering current (CEP sensitive)
v Enhancement of SHG near SC fluctuation Nisle Q. 2090

Iv) Ultrafast magnetization in Kitaev spin-liquid a-RuCl;

v Ultrafast magnetization (larger for T>T))

v Coherent carrier dynamics & theory Phys. Rev. Res. (L) 4,

1032032(2022)
v) Summary & inprogress arXiv: 2207.03877

v Correlated Dirac semimetal (SrIrO;)
Ey Electronic ferroelectricity ,,,,,,,,,,



	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39: Polarization rotation  Δθ 
	スライド 40: Unconventional behaviors of Δθ 
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46

