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T. Tomita, S. N., I. Danshita, Y. Takasu, and Y. Takahashi,
Sci. Adv. 3, e1701513 (2017).

I—

s SR PR EREMBRFH
v BIEHEEIRER
v JERFRIEFHEEERE % (OTOC) AlE




| ssxomn

* [ntroduction
vV SHEIIRFREE?
vV S HlRF R DY
vV B FHROSHEF, EFRAIERER
V TURVG AV TORAE—DRITE %3 c 0EBTIEAL

‘7'!:1‘&?': SEYbRFZAWV-RANEFZARRDEE
E?*ﬁiﬁ*@f X9 HEUED N R DT

T. Tomita, S. N., |. Danshita, Y. Takasu, and Y. Takahashi,
Sci. Adv. 3, e1701513 (2017).
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S. Ebadi et al., Nature 595, 227 (2021); arXiv:2012.12281
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T. Esslinger et al. PRL 94,080403(2004)
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v' Relaxation and Prethermalization in an Isolated Quantum System
(M. Gring et al., Science, 33, 1318 (2012); arXiv:1112.0013)
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v' Relaxation and Prethermalization in an Isolated Quantum System
(M. Gring et al., Science, 33, 1318 (2012); arXiv:1112.0013)
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EFAOTETIL(EE YRR, Lukin group @ Harvard)
H. Bernien et al., Nature 551, 579 (2017);arXiv:1707.04344
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sF AU ETILEEE YRR, Lukin group @ Harvard)

b H. Bernien et al., Nature 551, 579 (2017);arXiv:1707.04344
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St F (Optical lattice)
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| & FhBHMEF (tight-binding)

(Bose) Hubbard T JL

H = —tZaIaj + % E:m(nZ — 1)
(i,9) i
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| & FhBHMEF (tight-binding)

(Bose) Hubbard T JL

H = —tZaIaj -+ % Zm(nZ — 1)
(4,7) i
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| & FhBHMEF (tight-binding)

(Bose) Hubbard ETJL
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| & FhBHMEF (tight-binding)

(Bose) Hubbard T JL
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M. Greiner, et.al., Nature 415, 39-44 (2002)
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(Fermi) Hubbard ETJL
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(Fermi) Hubbard ETJL
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A. Damascelli et al., Rev. Mod. Phys. (2003).
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(Fermi) Hubbard €7 /)L
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T. Moriya and K. Ueda, Rep. Prog. Phys. (2003)
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| Ceoons | Coldmoms

Statistics Fermi Bose, Fermi, mixtures
(pseudo) Spin 1/2 integer, 1/2, ..., 5/2, ..., 9/2, ...
Mass m, ~ 10730 [kg] 10*-10° m,

Lattice constant ~ 0.5 [nm] ~ 500 [nm]

Tunneling (t) eV ~ 1014 [Hz] 100 - 1000 [Hz]
Density ~ 1023 [/cm3] ~ 10" [/cm?]
Interaction Coulomb, long range van der Waals, on-site

other couplings (phonon etc.) well-characterized, tunable

Fermi temperature ~ 10% [K]

Achieved temperature ~ 10 [uK] < 108T.

Generally exist None, or artificially created

Defects, disorders Uniform Harmonically trapped



| EFRAFBEMEE (Quantum Gas Microscope)
KB FDRFER~AIRILEDRE
— RFEBTHFRERL NILD S fEEETODREZEMEER A A AT EE !
= F SR TEEE (Quantum Gas Microscope, QGM)

TR FROBE—BFRIDE—[RFOEZEERAE
=R FPORERFOERMS M PCEFFATIVADEES A

87Rb (Boson)
> BE—RFoHPDE—[FFDEEEA

A A
A A

W. S. Bakr et al.
Nature 462, 74 (2009). J. F. Sherson et al., Nature 467, 68 (2010)



| EFRAFBEMEE (Quantum Gas Microscope)
A FDBFERH~AIRILDRE
S RPEATHETRERL AL O REETOEERMER AT !
= FSAEHEE (Quantum Gas Microscope, QGM)

TR FROBE—BFRIDE—[RFOEZEERAE
=R FPORERFOERMS M PCEFFATIVADEES A

87Rb (Boson)
> B—RFaiRE

C. Weitenberg et al., Nature 471, 319 (2011)



| EFRAFBEMEE (Quantum Gas Microscope)

KB FDBFER~FAIHEILD KK
— NFEHATHRFRERBLANILO D EERETORZER SR A AIEE !

= FSAEHEE (Quantum Gas Microscope, QGM)

TR FROBE—BFRIDE—[RFOEZEERAE
=R FPORERFOERMS M PCEFFATIVADEES A
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W. S. Bakr ez al., Science 329, 30 (2010)



| EFRAFBEMEE (Quantum Gas Microscope)

KB FDBFER~FAIHEILD KK
— AFHATHERFRERBLANILDO S HERETORZERE A ATEE !

Digital Micro-mirror Device, DMDDE A DMD

Silicon Substrate

“On-state” “Off-state”
Micromirror Micromirror

2D array of micro-mirrors
(1024 X 768 mirrors) (from DLP5500 manual, Texas Instruments)
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« ITRILX—XT—ILHVINELN(~1kHz)

EBEITLRILX—, Fermi;BE

| Electons | Coldatoms

Fermi temperature ~ 10% [K] ~ 100 [nK]

Achieved temperature ~ 10 [puK] < 108T¢ ~ 10 [nK] © 0.1T¢

2OBBALEEEEELT
SBEEZ+HSIZTIFSRA0
(T hOE—ZHREELN )

Ult=4

L '.:E d ISC L
0 0.1 0.2
I-n

W. Hofstetter et al., Phys. Rev. Lett., 89, 220407 (2002)
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DMDIZ&BISYTHRT v ILDFEL

“A cold-atom Fermi—Hubbard antiferromagnet”
(A. Mazurenko et al., Nature 545, 462 (2017); arXiv:1612.08436)
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AHITIIVZEFDA RAAEVIEEICKHT HERR T EERE

FERBFRAbIVEIFQPC) F

AFM cantil\ever + Charged tip

B. Brun et al.,
Nat. Comm.
(2013)

AHIRFOEFRAMAVEIM(QPC) R

Microscope
objective

1.0 1.2

1 1 i 1 - ' | 1 L
-6 —4 -2 0 2 4 6
y (um)

S. Hausler, S. N., M. Lebrat, D. Husmann, S. Krinner,
T. Esslinger, and J.-P. Brantut, PRL 119, 030403 (2017)
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* Introduction
vV AHllRFREE?
v SAHEF RO
V EEFROSAHENEREF, EFXIABEMER
V TR LAV ITUMAE—DBRITE %34 OEBRTILAL

°7'5*%?[30)7%%ﬂYbJ??€FHL\T'F'aﬁﬁ&E¥ K2R D EER
v 2 FHERICHTIRDNROMER

T. Tomita, S. N., |. Danshita, Y. Takasu, and Y. Takahashi,
Sci. Adv. 3, e1701513 (2017).
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"Measuring entanglement entropy in a quantum many-body system"
R. Islam et al., Nature 528, 77 (2015); arXiv:1509.01160

vV M ZRRICEITEIIVET LAV ESEFEE

"Quantum thermalization through entanglement in an isolated many-
body system"
A. M. Kaufman et al., Science, 353, 794 (2016); arXiv:1603.04409

v EFZERRIZEITBLieb-RobinsonfE F R A

"Light-cone-like spreading of correlations in a quantum many-body b W\M:AW\-/
system" \ o/ \o\e/ \o/ \o/Ag/ \o/ \o/ 3.

M. Cheneau et al., Nature 481, 484 (2012); arXiv:1111.0776 N aVAVAVAVAVR =4

d=vt

Figure 1 | Spreading of correlations in a quenched atomic Mott insulator.
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5FZARFHEBN-E.E.QRIE R. Islam et al., Nature 528, 77 (2015).
a =~ 680 Nnm € Twin state Many-body Site-resolved
:{._'; Mott Initialization —> > parity readout
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> A and B product state
./ e o
@@@@ - &
. [ ]
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A
S1 I
F ...Each pho nterfere itself.

(Wikipedia) Interferenc ifferen ever occurs.

P. A. M. Dirac
(Wikipedia)

“The Principle of Quantum Mechanics”
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E—LAXTYvBDERT X A BEFNEFNERDESIZ
BE3

U|A) = alA) +7|B),
U|B) = B|A) + 4| B).
ZZTZR#a, B, v, 8 1F. UNRI=R)—EBAZTHHIEND

P+ [y2P=1, BP+6P=1  o*B+~*§=0.

HHWNE, Chbhis
a=eY% cosf, [B=esiné,
v = —et0a=08+%) ging  §=e% cosh
EiE-9 . R, COE—LRT)yEDERIZEKY . AJIREEF
~ 1
Ul¥) = —=[(a|A)1 +7[B)1)(B|A)2 + 6| B)2)

V2
+€"(BlA)1 + 0| B)1)(alA)2 +7IB)2)].
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Keypoint: SWAPEE FDEIFEN Tr(p?) 52 5.

SWAPEEF:V R. Islam et al., Nature 528, 77 (2015)

V([41) @ [th2)) = [¥2) @ [¥h1), VZ =1.

BRR p; @ p, ITRHLTV DHEAFIEZROHSE

Tr(V p1 ®p2) =Tr (V prj )pkl (l @ [k) (1)

ijkl

T (Zpu o) k) ¢ J|®><|)

ijkl

- Z P'EJ)PM)(S’CJ il — Z pgk)f)g%) Tr (p1p2)
11kl

Y52 p=p, =p &I
Tr(p*) = Tr(V p® p)
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pr=p=p&ETHIE
Tr(p?) = Tr(V p® p)

RIE, AR —AMFORTIZ E-LRTVIITOEETHEROH NN/ T4 (1H
F)DEHH, 2D2DAE—FOEFIREDELZYDTO—TIZHE-TLNS:

(P;) = Tr(py1pz) = TT(PZ)

j i (') N " E—AX7O l) ‘\JQH—GO) §1$ :F i’ii + :wo identical N-particle Even particle number

in Output 1

SSUFAREIZEY, TUET LA T s~ _ T2
. o 7 . N X (J
vhOE—(D—ETHSHRéNyi-2 T kO v eg % o
E—): >: + 4. +
vy of S
_ 2 —t
SZ (A) -_ log Tr(pA) . Evenigzgti:t::)eu?;mber
b » \ P,

= - — e (P) = Trpypo) P1=P2 Tr (p?)
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"Light-cone-like spreading of correlations
in a quantum many-body system"
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Figure 1 | Spreading of correlations in a quenched atomic Mott insulator.
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Quantum effects allow black holes to emit exact black body radiation.
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