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はじめに
情報が(基礎⽅程式の導出以外)やや古いです。また、スライド内の記法が統⼀
されておりません。ただ、とくに実験技術の進展が素晴らしく、ここで紹介する
内容は現在も活発に進展中です。スライド内のレビューに関する情報は主に
以下から抜粋しております。
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Before discussing how to control…

White noise approximation:

Noise added in

Dynamics in                   = stochastic differential equation (SDE)

Control theory: Stochastic feedback control

= Wiener increment

Formally, and subjected to hence



Use the optimal estimate of     , i.e. the conditional 
expectation          , and design an estimate-based 
FB control

Stochastic system

Control theory: Stochastic feedback control

Dynamics of            = filter equation:

Dynamics of the conditional probability is obtained via

--- Kusher-Stratonovich equation (first term: Fokker-Planck eq.)

Cost for optim control: 



測定型量⼦フィードバック制御理論

創始者︓S. Belavkin

システム⽅程式 (量⼦ランジュバン⽅程式)︓

条件付き平均(最適推定値)のダイナミクス (量⼦フィルター⽅程式 or Belavkin Eq):

条件付き量⼦状態のダイナミクス (確率マスター⽅程式)︓



システム⽅程式の例: optical cavity

〜 LPFとして機能線形システム︕1から2への周波数応答 = 

別の例: degenerate parametric oscillator

出⼒モードの実部(q)＆虚部(p)︓

スクイズド光



Example: opto-mechanical system

Adiabatic elimination of the optical mode

線形システム︕



システム⽅程式︓

フィルター⽅程式︓

量⼦フィードバック制御の例︓
２準位原⼦のエネルギー状態を
励起状態に安定化

リアプノフ関数︓

制御則︓

効果︓

制御なし

制御あり



Figure from Geremia, Stockton, Doherty, and Mabuchi, PRL 19, 250801 (2003)

t=0: spin coherent 

(i)  Probabilistic generation of spin squeezed state

Time evolution of the moments :

The 1st moment fluctuates, but the 2nd deteministically decreases.
We get a spin squeezed state, but this 
vanishes when ensemble averaging. 

量子フィードバック制御の例： spin squeezing

state 

(Control : OFF)



J. K. Stockton,  GM Geremia, A. C. Doherty, and H. Mabuchi, 
Robust quantum parameter estimation: coherent magnetometry 
with feedback, PRA, 2003.
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量子フィードバック制御の例： spin squeezing



Cox, et al. (NIST group), Deterministic squeezed states 
with collective measurement and feedback, PRL (2016)

Deterministic Squeezed States with Collective Measurements and Feedback
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We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement
and real-time feedback. The pseudospin state of an ensemble of N ¼ 5 × 104 laser-cooled 87Rb atoms is
deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4
(6) dB] in variance below the standard quantum limit for unentangled atoms—comparable to the best
enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint
premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase
variance relative to the standard quantum limit for N ¼ 4 × 105 atoms. This is one of the largest reported
entanglement enhancements to date in any system.

DOI: 10.1103/PhysRevLett.116.093602

Entanglement is a fundamental quantum resource, able
to improve precision measurements and required for all
quantum information science. Advances in the creation,
manipulation, and characterization of entanglement will be
required to develop practical quantum computers, quantum
simulators, and enhanced quantum sensors. In particular,
quantum sensors operate by attempting to estimate the total
amount of phase that accumulates between two quantum
states, typically forming a pseudospin-1=2. When N atoms
are unentangled, the independent quantum projection or
collapse of each atom’s wave function fundamentally limits
the sensor by creating a rms uncertainty ΔθSQL ¼
1=

ffiffiffiffi
N

p
rad in the estimate of the quantum phase, the

standard quantum limit (SQL) [1]. However, entanglement
can be used to create correlations in the quantum collapse
of the N atoms [2,3] to achieve large enhancements in
phase resolution, in principle down to the Heisenberg
limit ΔθHL ¼ 1=N rad.
This Letter features two main results. First, following

Fig. 1(a), we use the outcome of a collective, or joint,
measurement to actively steer the collective spin projection
of an ensemble of 5 × 104 laser-cooled and trapped 87Rb
atoms to a target entangled quantum state. Real-time
feedback allows generation of the target state with
enhanced angular resolution S−1≡ðΔθSQL=ΔθÞ2¼5.5ð8Þ,
or 7.4(6) dB below the SQL, with no background sub-
tractions. Second, we perform a direct subtraction of
quantum noise without feedback and directly observe a
conditionally enhanced phase resolution S−1 ¼ 59ð8Þ or
equivalently 17.7(6) dB below the SQL. Along with
another recent result using similar collective measurements
[4], this is the largest phase enhancement from entangle-
ment to date in any system.
Entanglement is often created and manipulated via

unitary interactions between qubits [9–18]. However, the
joint measurements on two or more qubits used here
(sometimes referred to as quantum nondemolition

measurements) have shown promise for creating entangle-
ment, particularly among large numbers of qubits [19–30].
By adding real-time feedback guided by the outcome of
joint measurements, one can access a more diverse range of
quantum technologies including Heisenberg-limited atomic
sensors [31], reduction of mean field shifts in atom
interferometers [32,33], quantum teleportation [34,35],
and error correction [36,37]. Quantum noise suppression

FIG. 1. (a) A coherent spin state’s spin-projection noise (pink
distribution) is projected onto a squeezed state by a measurement
of Jz. The quantum state randomly collapses within the original
distribution, creating a conditionally squeezed state. The pre-
measurement’s outcome is then used to rotate the spin state’s
polar angle to a desired target spin projection (black solid line)
Jz ¼ Jztar , creating a deterministically squeezed state. (b) The
relevant 87Rb energy levels (black) and cavity resonance fre-
quency ωc (blue). (c) Simplified experimental diagram. The
cavity is probed in reflection. Homodyne detection of the probe is
sampled by a microcontroller that then applies microwaves at
6.8 GHz to achieve the desired feedback rotation θfb to create the
deterministically squeezed state in (a). See the Supplemental
Material [5] for experimental details.
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量子フィードバック制御の例： spin squeezing



New J. Phys. 16 (2014) 023024 Y Kato and N Yamamoto

through the usual quantum filtering technique, which leads to equation (6). Moreover, it is used
for updating p(i)

t = P({G = G(i)} |Yt) via the Bayes rule ( N is the normalization constant)
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t ) � Tr(c⇢̃t)}(dYt � 2
p
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t

hence we have equation (7).
Here we remark that in reality the output Yt is generated from the true system, thus from

equation (9) the innovation term is given by

dW 0
t = dWt + 2

p
� Tr(c⇢(i0)

t ) dt � 2
p
� Tr(c⇢(i)

t ) dt

which is not the standard Wiener increment when ⇢(i)
t 6= ⇢

(i0)
t . As a result, particularly when

the graph G(i) largely differs from the true one G(i0), the drift term of equation (6) (the
term proportional to dt) can take a big number such that the constraint Tr(⇢) = 1 or ⇢ > 0
is numerically violated; consequently in the simulation, the time evolution of ⇢(i)

t becomes
unstable and it sometimes diverges. Thus, we have introduced a normalization operation in
the simulator (MATLAB) for numerically preserving those constraints.

Appendix B. Steady state of the SME

In general, a pure state | i is a steady state of the SME (1) if and only if | i is a common
eigenvector of iH + c†c/2 and c, which can be directly proved using the results [44, 45]. Now,
|0⌦N i is clearly an eigenvector of c = � z

1 . Also noting the relation (� x ⌦ � x + � y ⌦ � y)|00i = 0,
we readily have H |0⌦N i = 0. Therefore, |0⌦N i is a common eigenvector of iH + c†c/2 and c,
hence it is a steady state of the SME. Note that the above fact does not mean that |0⌦N i is a
unique steady state of the SME.

Appendix C. Proof of theorem 2

The goal is to prove that the controlled SME, having the property of permutation symmetry,
has a steady state other than |0⌦N i. This can be achieved by showing that, based on the fact
mentioned in appendix B, there exists a common eigenstate of c and H such that c|�i = |�i and
|�i 6= |0⌦N i. Note that the eigenstate satisfying c|�i = �|�i cannot be a steady state due to the
adaptive measurement mechanism.

First, let P be a permutation matrix exchanging the indices 0 and 1 of two specific spins;
which, however, does not act on the first node. Then, Jz =6N

j=1�
z
j satisfies [P, Jz] = [H, Jz] =

[c, Jz] = 0, since P, H and c preserve the total z component of the network. Thus, P, H
and c can be block-diagonalized into N + 1 blocks corresponding to the eigenspaces of Jz,
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Figure 2. Possible graph structures of a three-nodes spin network. In each case the
first node is measured as indicated by the wavy arrow. The graphs G̃(1), . . . , G̃(8) are
classified into the graphs G(1), . . . , G(5), taking into account the topology of the graphs.

To attack the problem, we employ the estimation technique, which is found for instance
in [22–27]. The basic idea is that, based on the measurement data Yt , we attempt to estimate the
value of both the index i 2 {1, . . . , m} and a system observable in a recursive (continuous-time)
manner. For this purpose, let us define the classical probability distribution {p(1)

t , . . . , p(m)
t } with

p(i)
t = P({G = G(i)} |Yt) denoting the conditional probability that the true graph of the network

is given by G(i). Then the above-mentioned goal can be attained by constructing an update law
of {p(i)

t }, such that it changes in time and will get the maximum value at the index i = i0. At the
same time, we need to update the system state conditioned on the measurement results Yt ; let
us denote ⇢

(i)
t the whole network state corresponding to the i th nominal graph G(i). Now, the

system with graph G(i) is driven by the Hamiltonian

H (i) =
X

( j,k)2E(G(i))

�
�
� x

j ⌦ � x
k + �

y
j ⌦ �

y
k

�
(5)

while the measurement operator (4) is commonly taken for all nominal graphs. By using
basically the same technique for deriving the SME (1) and (2), we have the following update
laws of ⇢

(i)
t and p(i)

t (two methods to derive these equations are given in appendix A):

d⇢(i)
t = �i

⇥
H (i), ⇢(i)
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⇤
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t dt +
p
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�
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p
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�
, (6)
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p
�
�
Tr

�
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t

�
� Tr(c⇢̃t)

 
p(i)

t (dYt � 2
p

� Tr(c⇢̃t) dt), (7)

where ⇢̃t :=
Pm

i=1 p(i)
t ⇢

(i)
t . Here Yt is the measurement result generated from the true system

having the true Hamiltonian H = H (i0) and the measurement operator (4), i.e.

d⇢(i0)
t = �i[H (i0), ⇢(i0)

t ] dt + �D[c]⇢(i0)
t dt +

p
�H[c]⇢(i0)

t dWt , (8)

dYt = 2
p

� Tr
�
c⇢(i0)

t

�
dt + dWt . (9)

We recursively calculate the above equations to update the probability distribution p(i)
t as well

as the state ⇢
(i)
t , using the measurement result Yt ; what we expect is that, again, p(i)

t will get
the maximum value at the index i = i0 after many iterations. Note that in reality equations (8)
and (9) cannot be computed since H (i0) is unknown, but only the experimental data Yt is
obtained; in numerical simulations, however, we do that in order to generate Yt . Figure 3
illustrates the configuration of the estimation scheme.
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Figure 3. Configuration of the structure estimator. We perform a continuous-time
measurement on the accessible node of the spin network whose graph structure G(i0)

is unknown. The measurement result Yt is used to update p(i)
t , the probability that G(i)

is the true graph, as well as ⇢
(i)
t , the quantum state of the system with graph G(i). The

update laws are given by equations (6) and (7).

3.2. Example 1: three-spins case

Let us consider the simple network composed of three nodes; in this case, as depicted in figure 2,
we have m = 5 candidates as the graph structure. The true system is chosen to be the chain-type
network G(i0=3). The initial distribution is set to the uniform one p(i)

0 = 1/58i , because the
graph structure is assumed to be completely unknown at the initial time t = 0. From a similar
reason, we should set the initial density matrix to the maximal mixed state ⇢

(i)
0 = (I2/2)⌦38i .

In this setting, we run the algorithm (6) and (7) to compute p(i)
t . Figure 4(a) shows the averaged

time evolution of 50 sample paths of p(i)
t , denoted by hp(i)

t i; from this we clearly see that the
correct convergence of p(i)

t to the distribution with p(3) = 1 occurs most frequently. Hence, our
estimator correctly identifies the true graph G(3).

We now discuss why the identification is possible by measuring only a part of the network.
For this purpose let us focus on the estimate (conditional expectation) of the z-component of
the measured spin. The continuous measurement tends to increase the absolute value of the
estimate of � z [29], while now the value of the z-component of the measured spin is distributed
over the network due to the XY coupling Hamiltonian [37, 38], i.e. spin diffusion occurs. Hence,
intuitively, if the network is ‘small’ in the sense that the path length from the accessible node
to every terminal node is relatively short, then the spin wave quickly gets back to the measured
spin and consequently the estimate of the z-component of the measured spin will change very
fast, while in the opposite case the estimate will change slowly. Figure 4(b) plots the trajectories
of Z (i0=3)

t = Tr(c⇢(i0=3)
t ) and Z (i)

t = Tr(c⇢(i)
t ). These figures support the validity of the above

observation; because the chain is a relatively ‘large’ network, the true estimate Z (i0=3)
t actually

changes slowly. Remarkably, only the nominal estimate Z (3)
t shows a similar trajectory to that

of the true one Z (i0=3)
t , while the other nominals do not. This fact means that the measurement,

even only on a part of the network, certainly brings useful information for identifying the whole
structure. At the same time, figure 4(b) tells us that the time-evolution of Z (3)

t produced from
the large network is singularly different from those produced from the small networks, i.e. Z (1)

t ,
Z (2)

t and Z (4)
t , which all behave in a similar fashion. In general, if the interaction strengths are

uniform and the upper bound of the total spin number of the network is known, then there are a

6

例︓システムの構造に関する情報

量⼦状態以外の情報を更新してもよい。

Y. Kato and N. Yamamoto, Structure identification and state initialization 
of spin network with limited access, New Journal of Physics (2014)



超伝導系での量⼦フィードバック制御実験
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FIG. 3: (a) Ensemble histograms of the qubit state as function of time, showing the XY plane of the Bloch sphere, for two
example velocities of 20KHz and 40KHz, with �D/2⇡ = 130KHz. The state is initialized at |y = +1i. The measurement axis is
represented by white lines, while the theoretically calculated natural jump axis is indicated by red lines. The ensemble average
as a function of time in the frame of the jump axis is shown perpendicular to the jump axis (b) and along the jump axis (c).
Data are generated by averaging the trajectories as a function of time for the dragging velocities in the Zeno regime �D � 2|⌦|.
Black dashed lines show theoretical results using the experimental parameters given in the main body.

quadrature, the qubit evolution due to the measurement
is not a↵ected by phase back-action [34, 36]. Then the
dynamics of the system can be described by the following
master equation, in Itô form [1, 37]:

d⇢ =
�D

2
L[��(t)]⇢ dt+

r
�D

2
⌘ H[��(t)]⇢ dW, (2)

where L[X]⇢ = X⇢X
†
� (X†

X⇢+ ⇢X
†
X)/2 is the Lind-

blad dissipation superoperator, H[X]⇢ = X⇢ + ⇢X
†
�

hX⇢+ ⇢X
†
i⇢, and dW is a Gaussian distributed variable

with a variance dt [38], which is itself extracted from the
measurement record. We use the POVM that generates
this equation with additional corrections to account for
extra dephasing on the e↵ective qubit (at a rate ��) to
reconstruct the trajectories as function of time from the
continuous traces (see supplemental material). Fig. 2b
shows two example trajectories for a dragging velocity of
v=50KHz, with one trajectory showing a state that was
successfully dragged, while the other illustrates a ‘quan-
tum jump’. Note that after the jump the measurement
process continues to drag the state on the opposite side
of the Bloch sphere.

The dynamics of the whole ensemble can be visualized
by plotting the distribution of the state of the qubit in
the Bloch sphere as function of time, as shown in Fig. 3.
There are several prominent qualitative features in these
plots. As expected, the rate at which the qubit jumps

is larger for faster dragging velocities. Strikingly, these
quantum jumps always di↵use in an arc that extends op-
posite to the direction of rotation. This can be under-
stood from the form of the back-action, which is zero
at the poles of the measurement axis, and maximal in-
between. Hence, when the state gets ‘pushed forward’
(that is, in the direction of the rotation) by the back-
action, it is pushed towards a region of lower back-action.
At the same time, it cannot go past the measurement axis
because the back-action goes to zero at the pole. On the
other hand, if the state gets ‘pulled back’ by the back-
action, it is towards a region of higher back-action, thus
having an increased probability of ‘escaping’ and under-
going a transition to the other side of the Bloch sphere,
i.e. a quantum jump. Due to the relatively high quantum
e�ciency of our system, the state remains close to the
surface of the Bloch sphere, and trajectories that jump
arc out before arriving at the other side.

A consequence of the arcing feature in the dynamics is
the lagging of the average of the state behind the mea-
surement axis. For our specific experiment the ensemble
averaged dynamics can be solved analytically by going
into a frame rotating at the dragging velocity v, where
the measurement axis is fixed and the qubit is driven by
the Hamiltonian H = (⌦/2)�z, with ⌦ = 2⇡v. In this
measurement-axis frame the average qubit state evolves

理論提案︓Tanaka and Yamamoto, Robust adaptive measurement 
scheme for qubit-state preparation, Phys. Rev. A, 2012.

実験実現︓Siddiqi Group 
(Berkeley), Incoherent qubit 
control using the quantum zeno
effect, Phys. Rev. Lett., 2018.
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このハミルトニアンで駆動される(system + bathの)ユニタリダイナミクス︓

システム物理量の時間発展︓

Bathの物理量の時間発展︓



つまり、システム⽅程式＋出⼒⽅程式︓

ポイント︓

〜 出⼒⽅程式＝時間連続測定過程︕

測定値の集合︓

〜 システム物理量とbath物理量が同時に
対⾓化可能＝これらの同時分布が存在

条件付き平均が定義可能︓



とおく。

ゆえに 、



さらに、 より条件追き量⼦状態のダイナミクス︓

測定過程をすべて平均したもの︓

〜マスター⽅程式



フィルター⽅程式は射影測定の時間連続板を記述する

ゆえに つまり、システム物理量は時間変化しない。

⼀⽅、L の推定値が従うフィルター⽅程式︓

システム物理量 L は変化していないが、L に関する情報が取れている
〜⾮破壊測定

L の揺らぎ はどうなる︖

ゆえに

つまり、状態は L の固有状態の⼀つに収束する。射影測定︕



量⼦カルマンフィルタ＋ LQGフィードバック制御
Entanglement-assisted quantum feedback control, Yamamoto 
and Mikami, Quantum Information Processing, 2017

システム＝線形量⼦系︓

推定系＝カルマンフィルタ︓

量⼦機械系は線形モデルで良く近似でき、このとき、推定系は
カルマンフィルターと全く同じになる︕

量⼦を制御するには「量⼦プローブ」を
使うべしという提案。効果を数値確認。



Conditional mechanical squeezing of a macroscopic pendulum near 
quantum regimes, Matsumoto and Yamamoto, arXiv

みたいなナノデバイスではなく、数mgの
巨視的デバイスを精密制御して、量⼦効果を
発現させたい︕

重⼒の量⼦性、さらにはマクロ量⼦状態
由来の重⼒の解明︕

mg スケール振り⼦の⼊出⼒⽅程式︓

ウィーナーフィルタを⽤いて
条件付き共分散⾏列を計算、
理論と実験の整合性を検証

量⼦フィードバックできると何が嬉しいのか︖



∆𝑞∆𝑝 ≥ 1

𝑞

𝑝
パワースペクトルから、位置と運動量の
条件付き共分散⾏列を計算。揺らぎの⼤きさ
および「量⼦純粋度」を算出。

理論

実験

純粋度(今回)

純粋度(次世代)

揺らぎ(今回)

揺らぎ(次世代)

作成済みの超低ロスの振り⼦(次世代振り⼦)を⽤いると、揺らぎの
⼤きさ＜１ (量⼦スクイズド状態) が実現可能と予想︕

実験値

理論予測



ご清聴ありがとうございました。


