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Control theory: Optimal linear feedback control

Linear system & = Ax + Bu
Suppose & can be measured directly.

Control purpose :

1 T
0

FB control law that minimizes the above cost function is
{ 'U,;fk - = BTKtZBt \
K, = —K,A— ATK, + K,BBTK, — P

Target trajectory : x = ()



Control theory: Stochastic feedback control

Stochastic system m
{ T = f(x) + gr(xe)ue + ga(24)§
Yi=Nh(xe) + G %

Before discussing how to control.. Yi Ct

= White noise approximation: E(£,&;) = 0(s — ©)

m Noise added in [t, t + dt] = Wiener increment dW;

dW;
Formally, ¢, = — and subjected to \/(0, dt) hence dIW? = dt

®= Dynamics in [t, t + dt] = stochastic differential equation (SDE)

{ dlCt = f(ZCt)dt + g1 (ZCt)Utdt -+ QQ(SCt)th



Control theory: Stochastic feedback control

Stochastic system

Lt
dv, = f(2)dt + g1 () udt + go(e)dW,

A L
Use the optimal estimate of X4, i.e. the conditional L-(__I
Ut dytg

expectation 7;(x), and design an estimate-based
FB control u = F(m(z))

v,
Dynamics of 7, (x) = filter equation: t
dmi(x) = m(f(2))dt + [m(ah(z)) — m(@)me(h())][dy — m(h(x))dt]
Dynamics of the conditional probability is obtained via =, (z) = /xpt(:r:wt)dx

ipor) = [~ 22Dy LOPGN] )l = @)y — ()]

--- Kusher-Stratonovich equation (first term: Fokker-Planck eq.)

1 g 1 g
Cost for optim control: Jp = §E[/ (27 + ruf)dt} = §]E{/ (m(xQ) - ruf)dt]
0 0
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Modulator Detector

[l
Monnm

Controller Filter

U, || (T ,(X) ..|||{|}|;;|

un

SAFLBER (BFS5>21/\UKER):
dj (X) = j(LX)dt + j.([L*, XDdA®) + j.([X, LDdA@®)*

dym(t) = j,(L + L*)dt + dA(t) + dA(2)*

SIS (RBEEM DY A FZIRX (BF T+ IV —551EN or Belavkin Eq):
dm,(X) = m,(LX)dt + (m(XL + L*X) — m(X)m (L + L*)) (dym () — 7 (L + L*)dt)

X)=Tr(X
ZHNSBETREOI(F IR HRIRAT—HER) : I”t( ) = Tr(Xp1)

dp = L pdt + (Lp + pL* — Tr(Lp + pL*)p) (dym(t) — Tr(Lp + pL*)dt)



> AT LFERDAI: optical cavity

Controller

_ * —

m
A= _(,A 4. ;“Z)adt — JRid A — Jrpd Ay, Sl T

%
-y
dY, = J/kiadt +dA,, dY, = /kadt +dA,. J(Pie:z;v &

Up

vy Q
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BllDI: degenerate parametric oscillator

Pumping field
Hys =1€(a**—d?) /2. L; = JRja :/kat ¢
< = < B
d M M,
d—a - _’Y+Ka+ia*_ﬁ€_\/g€loss St i '\77" !
t 2 2
n=vra+s¢
* @ 4p ® 4p
HHDE— RDOEER(q) RESB(P) : . .
2 2 2 2 > >
arq2y WO teT/4 e 1oy W (Y —e)?/4
(In?liw]]) S+ (= /A’ (In"[rw]l”) = (oA

(In? 0wl (InPLiw]l?) = 1 R4 X R



(41, P1)

Example: opto-mechanical system Circulator a
2
§
Hyor = m"‘%le/2 + p%/2m L= \/EaZ T>
n

_ql- 0 I/m| O 0 _ql 00 ] 0
d | p1 _ —mw?* 0 ¥ 0 P1 00 &9 1
il |~ | 0 0 ]=x2 0 o | Ve To|le] ||
_pz_ 5 Y 0 0 —fﬁ/z_ _p2_ _01_ _O_

-l L]+ e ]
| L0 Ve]lLp 3
l Adiabatic elimination of the optical mode

d[gq 0 1/m||gq 0 0
E[pll]=[—mw2 0 ][pll]_\/x[l]gq+[1]f
fRIZS AT

. q1 | 1
y=[VA O][m] 3 dx; = Ax;dt + Fu,dt + BdW,
dy; = Cx;dt + DdW,
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e e : __ Computer
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S ZFLHER : L Laser LI u, _Lontreter],

dji(02) = — % je(02)dt + ueje(0=)dt + /it (0y)dZe,

HlEl 7 U
dji(oy) = —%jt(dy)dt — VJt(02)dZt, 1 - oD
djit(0=) = —urji(oz)dl ;

7*()[/9—?'5*5:_& . (xt,Zt) — (ﬂ-t(aw)aﬂ-t(az))

-1
dr; = — %a:tdt + urzedt — \/[yTizedwy, 0 1000 2000 3000
Time step
dz; = —uszedt + /(1 — 27)dw
= Tumdt L= 5 )y $5 0
UPTJ IR V; = E(z — 1)?] : (b2)
SR : u = —yz, !
: = — 2(1 —2)3 < -1
AR ¢ dv]dt YEz"(1-2)7 <0 0 1000 2000 3000

Time step



EFIT1—F/\yOHI#HDH: spin squeezing

(i) Probabilistic generation of spin squeezed state (Control : OFF)

A

% 5 b g i r=Ek

E|

i s . /‘\ C"“ By >

SR ¥ S — ) N y )

S | . 1=0 . t :l0.0S . t=0.2 | B |

0 0.05 01 0.15 0.2 0.25 0.3 t=0. spin coherent

Time evolution of the moments : state

dmy(J.) = 2/ Mmy (AJ?)[dy — 28/ M, (J.)di]
dm(AJ?) = —4Mm,(AJ)dt
The 1st moment fluctuates, but the 2nd deteministically decreases.

-— We get a spin squeezed state, but this
vanishes when ensemble averaging.

Figure from Geremia, Stockton, Doherty, and Mabuchi, PRL 19, 250801 (2003)



J. K. Stockton, GM Geremia, A. C. Doherty, and H. Mabuchi,

Robust quantum parameter estimation: coherent magnetometry
with feedback, PRA, 2003.

A z

| |
z | FB control —
_E 10F < - e
S | N — 7 ) Y
= 5 . t=0 . r:l005 . r:OZI B 1

0 0.05 0.1 0.15 0.2 0.25 0.3
- M . - . .
dji()2) = =S )dt + o) dt + VM Gi(J,)(id By — idB)
Dynamics M

(QSDE) 1 () = _?jt(Jy)dt — VM ji(J,)(idB, — idB])
i dje(J.) = —ugje(Jo)dt

Goal: Jr = %E[/OT (G (J.)? + u?)dt} = %E[/OT <7Tt(<]3) + uf)dt] — min.



EFI14—

R/ HI#EIDH : spin squeezing

Cox, et al. (NIST group), Deterministic squeezed states
with collective measurement and feedback, PRL (2016)

(@) Coherent Conditionally Deterministically
Spin State Squeezed Iasuiiy Squeezed

(Rotate by 0,)

Target J,

( ) Ewl N (C 87Rb
2780 nm i i
|T> M vy M\crowave
A ! 5 Gl Antenna Homodyne
H') : Cgrl\troller'
, / (c)

Achieved 7.6 dB squeezing !
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Y. Kato and N. Yamamoto, Structure identification and state initialization
of spin network with limited access, New Journal of Physics (2014)

dﬁ”——dpﬂwpp]m+ypk]”dphfvudﬁﬂmn 2y Tr(cp”) dr)

(z) =2./7y {Tr (cpt(’)) Tr(cﬁ,)} pt(i)(dY,; —2/y Tr(cp,) dt)

Structure estimator

True Estimated

Graph Graph
( (o)
Pt 1.2
0.8
(1) - 1.1
T I & Z%ﬁ % &%)

Py

(P & P( )) — (pt-i-dt pt+dt)

. // \\\
) @) (io) (m) 03— | T \\\\\\
0 _ ~N ~
9 G G G G ) - — S~

(p?)
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1ZmHESE | Tanaka and Yamamoto, Robust adaptive measurement
scheme for qubit-state preparation, Phys. Rev. A, 2012.
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" X+Y | Analog
oAty 1OMHZNT Multipli _‘_‘ o
: Phase error = Feedback signal Pxef Y ;Eﬁ;iﬁ . Slddlql GrOup
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Derivation

m Interaction with the vacuum field

. system
H = z'(cb,zr — c'by) field
—i(c®b —c @b)
m Quantum white noise tl It + dt

be, b]] = 0(s — 1)

when we measure this
via a homodyne detector

m Quantum Wiener increment dB; /
dB
Formally, ), = d_tt and the output prob. of dB; + dBZ is NV (0, dt)

dB? = dB!*> = dB]dB, =0 dB,dB) = dt
= Interaction Hamiltonian in [t, ¢ + df]

Hdt = i(cdBf — 'dBy)
—i(c®dB] — ' @ dBy)
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X)

=)

t

7¢(X) - okl
A(t) Y(t) Ym (1) X
System Filter

CDI\Z)L ST > TEREN SN B (system + bathD)1—HUSFAF =X :
dU(t) = (( —1H — %L*L)dt + LdA(t)* — L*dA(t))U(t), U =1,

225 AR EOERIRE - dADAAW)” = dt

(X)) :=U@)*XU@)
—> dji(X) = j(LX)dt + j ([L*, X1)dA®) + j:([X, LDdA®)"
LX :=1[H,X]+ L*XL — %L*LX — %XL*L
BathDYIEE DIFEFEE
ym() ==Y (@) + V@) = U@)* (AF) + A@)*)U @)

—> dyn(t) = j,(L+ L*)dt +dA(t) +dA®@)"



7t(X) okl ad
A(t) Y(t) Ym (1) X
System Filter

DFD. AT LBEN+ENHERN
dji(X) = j(LX)dt + j ([L*, XDdA(#) + j:([X, L])dA(#)”
dym(t) = j,(L + L*dt +dA@) + dA(t)*

N>
[Ym($), ym()] =0, Vs, t. ~ H71751E3 = FEEGDAEBIE |

—> AEEDES : %, = VN{In(s),0 <s <t}

[Ym(s), j:(X)] =0, Vs <t ~ ZZFLYIEELbath¥IESHEREF(C
X AB{LRIEE = CN S DRI MM FEE

— XIS THINERARE !

m(X) = argmin P[(ji(X) — 2)°] = P(jr(X) | Zpn,1)



dm,(X) = Hidt + Hadyn() E35< o h(0) = exp / h(5)dym(s) — 5 / h(s)ds)

0 0
dP(h(0ji (X)) = P(dh(0)j;(X) + hO)dj: X0 + dh (1)), (X))
= P(AOA®j(L + LYt - j,(X) +h@©)j(LX)dt +hOROAR) - ji((X, LDAAD)")

= P(AOA®j(LX + L*X) + (1) ji(LX) + hOh) ji(X, L))t

P(ﬁ(:)h(z) J(XL +L*X) + k() j, (EX))dt,

—> TP(0i0) = P[P(ROMO XL + LX) + R0 (LX) | %4,)]
=P[AOROP(ji (XL + LX) | %, ) + hOP(i(£X) | Ffo, )]

= P(ﬁ(t)h(t)w,(XL + L*X) + h(t)m, ([,X)).

dP(h®)ji(X)) = dB[P(h®)i(X) | %) | = dP(AOPG0) | %)
= dP(h()m (X)) = P(dh ) (X) + h(O)dm,(X) + dh®)dm (X))

- P[ﬁ(t)h(t) (7r,(L + LY (X) + ]I-]Iz) +h@) (th + Hym, (L + L*))]dt

WA (Z Hy +Hym (L + L*) = m (LX) m(L+ L)m(X) + Hp = m (XL + L*X)

—> d7m(X) = m(LX)dt + (m (XL + L*X) — m(X)m (L + L*)) (dym(t) — m(L + L*)dt)



E5(C. uUm (X)) =Tr(Xp(1)) KDRIPESEFREDY A FZTX

dp = L*pdt + (Lp 4 pL* — Tr(Lp + pL*)p) (dym(t) —Tr(Lp+ pL*)dt)

1 1
L*p:=—1[H, p]+ LpL* — EL*Lp — EpL*L
AIE@IEZ I N CHFEILIZED :
p :=E(p)

dﬁ * = p ~7 % 1 *r = 1‘ * =
o = L*pdt = —i[H, p] + LpL* — SL*Lp—ZpL*L  ~ N A —HERN
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L=L* H=0

—> dj;(L) = j; (L*LL — %LL*L — %L*LL)dt + jr((L*, LDdA + j:([L, L))dA* =0.
WZI(C ji(L) = jo(L) =L DF%0D. SRFLYES(FEFEZE U0,
—7. L OHEEBELIREDS T 1)L —FHER

dm (L) = 2[m,(L*) — m(L)*|dv = 2((L — (L)c)*).dv

AT LAYIBE L (ZZELUTULVRWLAY, L ICETDIBEHRMNEMI TLYD
~ IR HITE

L DIESE (ALY, = (L — (L))?), [FESRB? (Ve i=m ()

C%IP’[(ALz)c] = —4P[(AL*)?] WZXI(Z P[(AL%*?] - 0

DFED. IREE L DEBIRED—DI(CINRT D. Fie2HlE !
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Entanglement-assisted quantum feedback control, Yamamoto
and Mikami, Quantum Information Processing, 2017
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EF I — RNV IOTEHEMAMRELLDOH ?
Conditional mechanical squeezing of a macroscopic pendulum near
guantum regimes, Matsumoto and Yamamoto, arXiv
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feedback cooling

mg AT —JURDFD AL TIHIER

q = Wmp,
. 4G.m 8Gm 0
P = —Wmq — YmpP + 2’)’mpin - Wﬁl)in + Wyl ‘

8Gmd\/N
X =- fq — /NZin + 40\/NYin-
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